- -

A methodology for discriminant time series analysis applied to microclimate monitoring of fresco paintings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A methodology for discriminant time series analysis applied to microclimate monitoring of fresco paintings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramírez, Sandra es_ES
dc.contributor.author Zarzo Castelló, Manuel es_ES
dc.contributor.author Perles, Angel es_ES
dc.contributor.author García Diego, Fernando Juan es_ES
dc.date.accessioned 2022-05-12T18:06:59Z
dc.date.available 2022-05-12T18:06:59Z
dc.date.issued 2021-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182578
dc.description.abstract [EN] The famous Renaissance frescoes in Valencia¿s Cathedral (Spain) have been kept under confined temperature and relative humidity (RH) conditions for about 300 years, until the removal of the baroque vault covering them, carried out in 2006. In the interest of longer-term preservation and in order to maintain these frescoes in good condition, a unique monitoring system was implemented to record both air temperature and RH. Sensors were installed in different points at the vault of the apse, during the restoration process. The present study proposes a statistical methodology for analyzing a subset of RH data recorded in 2008 and 2010, from the sensors. This methodology is based on fitting different functions and models to the time series, in order to classify the sensors. The methodology proposed, computes classification variables and applies a discriminant technique to them. The classification variables correspond to estimates of parameters of the models and features such as mean and maximum, among others. These features are computed using values of the functions such as spectral density, sample autocorrelation (sample ACF), sample partial autocorrelation (sample PACF), and moving range (MR). The classification variables computed were structured as a matrix. Next, Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was applied in order to discriminate sensors according to their position in the vault. It was found that the classification of sensors derived from Seasonal ARIMA-TGARCH showed the best performance (i.e., lowest classification error rate). Based on these results, the methodology applied here can be useful for characterizing the differences in RH, measured at different positions in a historical building. es_ES
dc.description.sponsorship This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 814624. Furthermore, the project was partially supported by Instituto Colombiano de Credito Educativo y Estudios Tecnicos en el Exterior (ICETEX) by means of Programa credito Pasaporte a la Ciencia ID 3595089, and also by Pontificia Universidad Javeriana Cali (Nit 860013720-1) through the Convenio de Capacitacion para Docentes O. J. 086/17. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ARIMA es_ES
dc.subject Art conservation es_ES
dc.subject Holt-Winters es_ES
dc.subject Sensor diagnosis es_ES
dc.subject Sparse PLS-DA es_ES
dc.subject TGARCH es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A methodology for discriminant time series analysis applied to microclimate monitoring of fresco paintings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s21020436 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/814624/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ICETEX//3595089/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Pontificia Universidad Javeriana//O. J. 086%2F17//Convenio de Capacitación para Docentes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Pontificia Universidad Javeriana//860013720-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Ramírez, S.; Zarzo Castelló, M.; Perles, A.; García Diego, FJ. (2021). A methodology for discriminant time series analysis applied to microclimate monitoring of fresco paintings. Sensors. 21(2):1-28. https://doi.org/10.3390/s21020436 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s21020436 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 33435459 es_ES
dc.identifier.pmcid PMC7827762 es_ES
dc.relation.pasarela S\425329 es_ES
dc.contributor.funder Pontificia Universidad Javeriana es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el Exterior es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem