Mostrar el registro sencillo del ítem
dc.contributor.author | Kumar, Pushpendra | es_ES |
dc.contributor.author | Erturk, Vedat Suat | es_ES |
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.contributor.author | Banerjee, Ramashis | es_ES |
dc.contributor.author | Manickam, A. | es_ES |
dc.date.accessioned | 2022-05-20T18:05:56Z | |
dc.date.available | 2022-05-20T18:05:56Z | |
dc.date.issued | 2021-07-20 | es_ES |
dc.identifier.issn | 1687-1847 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182754 | |
dc.description.abstract | [EN] In this study, our aim is to explore the dynamics of COVID-19 or 2019-nCOV in Argentina considering the parameter values based on the real data of this virus from March 03, 2020 to March 29, 2021 which is a data range of more than one complete year. We propose a Atangana-Baleanu type fractional-order model and simulate it by using predictor-corrector (P-C) method. First we introduce the biological nature of this virus in theoretical way and then formulate a mathematical model to define its dynamics. We use a well-known effective optimization scheme based on the renowned trust-region-reflective (TRR) method to perform the model calibration. We have plotted the real cases of COVID-19 and compared our integer-order model with the simulated data along with the calculation of basic reproductive number. Concerning fractional-order simulations, first we prove the existence and uniqueness of solution and then write the solution along with the stability of the given P-C method. A number of graphs at various fractional-order values are simulated to predict the future dynamics of the virus in Argentina which is the main contribution of this paper. | es_ES |
dc.description.sponsorship | The third author is supported by MICINN and FEDER, Project PID2019-105011GB-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.relation.ispartof | Advances in Difference Equations | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | COVID-19 | es_ES |
dc.subject | Argentina | es_ES |
dc.subject | Mathematical models | es_ES |
dc.subject | TRR algorithm | es_ES |
dc.subject | Atangana-Baleanu non-classical derivative | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A case study of 2019-nCOV cases in Argentina with the real data based on daily cases from March 03, 2020 to March 29, 2021 using classical and fractional derivatives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13662-021-03499-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Kumar, P.; Erturk, VS.; Murillo Arcila, M.; Banerjee, R.; Manickam, A. (2021). A case study of 2019-nCOV cases in Argentina with the real data based on daily cases from March 03, 2020 to March 29, 2021 using classical and fractional derivatives. Advances in Difference Equations. 2021(1):1-21. https://doi.org/10.1186/s13662-021-03499-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13662-021-03499-2 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2021 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 34306044 | es_ES |
dc.identifier.pmcid | PMC8290213 | es_ES |
dc.relation.pasarela | S\455728 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Wu, Z., McGoogan, J.M.: Characteristics of and important lessons from the coronavirus disease 2019 (Covid-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 323(13), 1239–1242 (2020) | es_ES |
dc.description.references | Zhang, C., Zheng, W., Huang, X., Bell, E.W., Zhou, X., Zhang, Y.: Protein structure and sequence reanalysis of 2019-ncov genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and hiv-1. J. Proteome Res. 19(4), 1351–1360 (2020) | es_ES |
dc.description.references | Hui, D.S., Azhar, E.I., Madani, T.A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T.D., Memish, Z.A., Drosten, C., et al.: The continuing 2019-ncov epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91, 264–266 (2020) | es_ES |
dc.description.references | Elfiky, A.A., Mahdy, S.M., Elshemey, W.M.: Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J. Med. Virol. 89(6), 1040–1047 (2017) | es_ES |
dc.description.references | Li, X., Zai, J., Zhao, Q., Nie, Q., Li, Y., Foley, B.T., Chaillon, A.: Evolutionary history, potential intermediate animal host, and cross-species analyses of Sars-Cov-2. J. Med. Virol. 92(6), 602–611 (2020) | es_ES |
dc.description.references | Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., Graham, B.S., McLellan, J.S.: Cryo-em structure of the 2019-ncov spike in the prefusion conformation. Science 367(6483), 1260–1263 (2020) | es_ES |
dc.description.references | Villar, J., Zhang, H., Slutsky, A.S.: Lung repair and regeneration in ards: role of pecam1 and wnt signaling. Chest 155(3), 587–594 (2019) | es_ES |
dc.description.references | Wang, H., Ma, S.: The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am. J. Emerg. Med. 26(6), 711–715 (2008) | es_ES |
dc.description.references | Wan, Y., Shang, J., Graham, R., Baric, R.S., Li, F.: Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of Sars coronavirus. J. Virol. 94(7), e00127-20 (2020) | es_ES |
dc.description.references | Tang, N.L.-S., Chan, P.K.-S., Wong, C.-K., To, K.-F., Wu, A.K.-L., Sung, Y.-M., Hui, D.S.-C., Sung, J.J.-Y., Lam, C.W.-K.: Early enhanced expression of interferon-inducible protein-10 (cxcl-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin. Chem. 51(12), 2333–2340 (2005) | es_ES |
dc.description.references | Gu, J., Korteweg, C.: Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 170(4), 1136–1147 (2007) | es_ES |
dc.description.references | Ho, J.C., Chan, K.N., Hu, W.H., Lam, W.K., Zheng, L., Tipoe, G.L., Sun, J., Leung, R., Tsang, K.W.: The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am. J. Respir. Crit. Care Med. 163(4), 983–988 (2001) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S., Murillo-Arcila, M.: A new fractional mathematical modelling of Covid-19 with the availability of vaccine. Results Phys. 24, 104213 (2021) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S.: A case study of Covid-19 epidemic in india via new generalised Caputo type fractional derivatives. Math. Methods Appl. Sci., 1–14 (2021) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S., Abboubakar, H., Nisar, K.S.: Prediction studies of the epidemic peak of coronavirus disease in Brazil via new generalised Caputo type fractional derivatives. Alex. Eng. J. 60(3), 3189–3204 (2021) | es_ES |
dc.description.references | Nabi, K.N., Kumar, P., Erturk, V.S.: Projections and fractional dynamics of Covid-19 with optimal control strategies. Chaos Solitons Fractals 145, 110689 (2021) | es_ES |
dc.description.references | Erturk, V.S., Kumar, P.: Solution of a Covid-19 model via new generalized Caputo-type fractional derivatives. Chaos Solitons Fractals 139, 110280 (2020) | es_ES |
dc.description.references | Gao, W., Veeresha, P., Baskonus, H.M., Prakasha, D., Kumar, P.: A new study of unreported cases of 2019-ncov epidemic outbreaks. Chaos Solitons Fractals 138, 109929 (2020) | es_ES |
dc.description.references | Kumar, P., Suat Erturk, V.: The analysis of a time delay fractional Covid-19 model via Caputo type fractional derivative. Math. Methods Appl. Sci., 1–14 (2020) | es_ES |
dc.description.references | Atangana, A., Araz, S.İ.: Modeling and forecasting the spread of Covid-19 with stochastic and deterministic approaches: Africa and Europe. Adv. Differ. Equ. 2021(1), 1 (2021) | es_ES |
dc.description.references | Atangana, A.: Modelling the spread of Covid-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination? Chaos Solitons Fractals 136, 109860 (2020) | es_ES |
dc.description.references | Atangana, A., Araz, S.İ.: Mathematical model of Covid-19 spread in Turkey and South Africa: theory, methods, and applications. Adv. Differ. Equ. 2020(1), 1 (2020) | es_ES |
dc.description.references | Atangana, A., et al.: A novel Covid-19 model with fractional differential operators with singular and non-singular kernels: analysis and numerical scheme based on Newton polynomial. Alex. Eng. J. 60(4), 3781–3806 (2021) | es_ES |
dc.description.references | Bulut, H., Kumar, D., Singh, J., Swroop, R., Baskonus, H.M.: Analytic study for a fractional model of hiv infection of cd4+ t lymphocyte cells. Math. Nat. Sci. 2(1), 33–43 (2018) | es_ES |
dc.description.references | Zhoua, Y.-H., Yang, Y., Zhang, H.: Stability of non-monotone critical waves in a population dynamics model with spatio-temporal delay. Math. Nat. Sci. 2, 8–23 (2018) | es_ES |
dc.description.references | Musa, S.S., Qureshi, S., Zhao, S., Yusuf, A., Mustapha, U.T., He, D.: Mathematical modeling of Covid-19 epidemic with effect of awareness programs. Infect. Dis. Model. 6, 448–460 (2021) | es_ES |
dc.description.references | Memon, Z., Qureshi, S., Memon, B.R.: Assessing the role of quarantine and isolation as control strategies for Covid-19 outbreak: a case study. Chaos Solitons Fractals 144, 110655 (2021) | es_ES |
dc.description.references | Kumar, P., Suat Ertürk, V., Nisar, K.S.: Fractional dynamics of huanglongbing transmission within a citrus tree. Math. Methods Appl. Sci. (2021) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S., Murillo-Arcila, M.: A complex fractional mathematical modeling for the love story of layla and majnun. Chaos Solitons Fractals 150, 111091 (2021) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S., Yusuf, A., Kumar, S.: Fractional time-delay mathematical modeling of oncolytic virotherapy. Chaos Solitons Fractals 150, 111123 (2021) | es_ES |
dc.description.references | Abboubakar, H., Kumar, P., Erturk, V.S., Kumar, A.: A mathematical study of a tuberculosis model with fractional derivatives. Int. J. Model. Simul. Sci. Comput. (2021) | es_ES |
dc.description.references | Kumar, P., Rangaig, N.A., Abboubakar, H., Kumar, S.: A malaria model with Caputo–Fabrizio and Atangana–Baleanu derivatives. Int. J. Model. Simul. Sci. Comput. 12(2), 2150013 (2020) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S., Yusuf, A., Nisar, K.S., Abdelwahab, S.F.: A study on canine distemper virus (cdv) and rabies epidemics in the red fox population via fractional derivatives. Results Phys. 25, 104281 (2021) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S., Almusawa, H.: Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana–Baleanu derivatives. Results Phys. 24, 104186 (2021) | es_ES |
dc.description.references | Kumar, P., Erturk, V.S.: Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative. Chaos Solitons Fractals 144, 110672 (2021) | es_ES |
dc.description.references | Nabi, K.N., Abboubakar, H., Kumar, P.: Forecasting of Covid-19 pandemic: from integer derivatives to fractional derivatives. Chaos Solitons Fractals 141, 110283 (2020) | es_ES |
dc.description.references | Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002) | es_ES |
dc.description.references | Nabi, K.N.: Forecasting Covid-19 pandemic: a data-driven analysis. Chaos Solitons Fractals 139, 110046 (2020) | es_ES |
dc.description.references | Politologue.com: Coronavirus (Covid19), https://coronavirus.politologue.com/coronavirus-cameroun.CM. Accessed 10 Jul 2020 | es_ES |
dc.description.references | Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model (2016) arXiv:1602.03408 | es_ES |
dc.description.references | Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34(2), 149–179 (2013) | es_ES |
dc.description.references | Ahmed, E., El-Sayed, A., El-Saka, H., Ashry, G.A.: On applications of ulam-hyers stability in biology and economics (2010) arXiv:1004.1354 | es_ES |
dc.description.references | Baleanu, D., Jajarmi, A., Hajipour, M.: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel. Nonlinear Dyn. 94(1), 397–414 (2018) | es_ES |
upv.costeAPC | 1700 | es_ES |