Mostrar el registro sencillo del ítem
dc.contributor.author | Xu, Teng | es_ES |
dc.contributor.author | Gómez-Hernández, J. Jaime | es_ES |
dc.contributor.author | Chen, Zi | es_ES |
dc.contributor.author | Lu, Chunhui | es_ES |
dc.date.accessioned | 2022-05-24T18:04:48Z | |
dc.date.available | 2022-05-24T18:04:48Z | |
dc.date.issued | 2021-04 | es_ES |
dc.identifier.issn | 0022-1694 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182863 | |
dc.description.abstract | [EN] Understanding a contaminant source may help in a better management and risk assessment of a polluted aquifer. However, contaminant source information may not be available when a pollutant is detected in a drinking well. The restart ensemble Kalman filter (restart EnKF, also named r-EnKF) has been demonstrated in synthetic and laboratory experiments as an efficient solution for the identification of a contaminant source. Recently, the ensemble smoother with multiple data assimilation (ES-MDA) has been proposed as an alternative to the r-EnKF as a more efficient solution given that the r-EnKF needs to restart the simulation of the state equation from time zero after each data assimilation step. An analysis, in a synthetic aquifer, of the accuracy of the ES-MDA for the simultaneous identification of a contaminant source and the spatial distribution of hydraulic conductivity by assimilating both piezometric head and concentration observations is carried out using the r-EnKF as a benchmark. The conclusion is that the ES-MDA can outperform the r-EnKF, but the expected speed advantage, associated with the possibility of assimilating all data at once, does not exist. For the ES-MDA to reach the same level of accuracy as the r-EnKF, the number of multiple data assimilations must be large, and final computing time is similar for both approaches. However, the ES-MDA can do much better than the r-EnKF if the number of iterations increases even further, with the consequent increase of computational cost. | es_ES |
dc.description.sponsorship | Financial support to carry out this work was received from the Spanish Ministry of Economy and Competitiveness through project CGL2014-59841-P, and from the Spanish Ministry of Education, Culture and Sports through a fellowship for the mobility of professors in foreign research and higher education institutions of reference to the second author, reference PRX17/00150. Teng Xu also acknowledges the financial support from the Fundamental Research Funds for the Central Universities (B200201015) and Jiangsu Specially-Appointed Professor Program (B19052). Chunhui Lu acknowledges the financial support from the National Natural Science Foundation of China (51679067 and 51879088), and Fundamental Research Funds for the Central Universities (B200204002). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Hydrology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Contaminant source identification | es_ES |
dc.subject | Data assimilation | es_ES |
dc.subject | Ensemble smoother with multiple data assimilation | es_ES |
dc.subject | Restart ensemble Kalman filter | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | A comparison between ES-MDA and restart EnKF for the purpose of the simultaneous identification of a contaminant source and hydraulic conductivity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jhydrol.2020.125681 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109131RB-I00/ES/APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200201015/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200204002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2014-59841-P/ES/¿QUIEN HA SIDO?/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JPDE//B19052/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//51679067/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//51879088/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//PRX17%2F00150/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Xu, T.; Gómez-Hernández, JJ.; Chen, Z.; Lu, C. (2021). A comparison between ES-MDA and restart EnKF for the purpose of the simultaneous identification of a contaminant source and hydraulic conductivity. Journal of Hydrology. 595:1-14. https://doi.org/10.1016/j.jhydrol.2020.125681 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jhydrol.2020.125681 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 595 | es_ES |
dc.relation.pasarela | S\436282 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMIA Y EMPRESA | es_ES |
dc.contributor.funder | Jiangsu Provincial Department of Education | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | es_ES |