- -

Topological transitivity of the normalized maps induced by linear operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Topological transitivity of the normalized maps induced by linear operators

Mostrar el registro completo del ítem

Mandal, PN. (2022). Topological transitivity of the normalized maps induced by linear operators. Applied General Topology. 23(1):135-143. https://doi.org/10.4995/agt.2022.15613

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182886

Ficheros en el ítem

Metadatos del ítem

Título: Topological transitivity of the normalized maps induced by linear operators
Autor: Mandal, Pabitra Narayan
Fecha difusión:
Resumen:
[EN] In this article, we provide a simple geometric proof of the following fact: The existence of transitive normalized maps induced by linear operators is possible only when the underlying space's real dimension is either ...[+]
Palabras clave: Topological transitivity , Supercyclicity , Projective transformation , Linear transformation , Cone transitivity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.15613
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.15613
Código del Proyecto:
info:eu-repo/grantAgreement/DAE//2/39(2)/2016%2FNBHM%2FR & D-II%2F11397
Agradecimientos:
NBHM-DAE (Government of India) Ref. No. 2/39(2)/2016/NBHM/R & D-II/11397
Tipo: Artículo

References

J. M. Aarts and F. G. M. Daalderop, Chaotic homeomorphisms on manifolds, Topology and its Applications 96 (1999), 93-96.

https://doi.org/10.1016/S0166-8641(98)00041-8

F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press (2009), Cambridge. [+]
J. M. Aarts and F. G. M. Daalderop, Chaotic homeomorphisms on manifolds, Topology and its Applications 96 (1999), 93-96.

https://doi.org/10.1016/S0166-8641(98)00041-8

F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press (2009), Cambridge.

https://doi.org/10.1017/CBO9780511581113

L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag (1992), Berlin.

https://doi.org/10.1007/BFb0084762

S. G. Dani, Dynamical properties of linear and projective transformation and their applications, Indian Journal of Pure and Applied Mathematics 35 (2004), 1365-1394.

M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer (2011), New York.

https://doi.org/10.1007/978-1-4419-7515-7

K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer (2011), London.

https://doi.org/10.1007/978-1-4471-2170-1

G. Herzog, On linear operators having supercyclic vectors, Studia Mathematica 103 (1992), 295-298.

https://doi.org/10.4064/sm-103-3-295-298

N. H. Kuiper, Topological conjugacy of real projective transformation, Topology 15 (1976), 13-22.

https://doi.org/10.1016/0040-9383(76)90046-X

R. Shah, A. Nagar and S. Shridharan (Ed. by), Elements of Dynamical Systems, Hindusthan Publishers (2020), Delhi.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem