- -

On w-Isbell-convexity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On w-Isbell-convexity

Mostrar el registro completo del ítem

Olela Otafudu, O.; Sebogodi, K. (2022). On w-Isbell-convexity. Applied General Topology. 23(1):91-105. https://doi.org/10.4995/agt.2022.15739

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182892

Ficheros en el ítem

Metadatos del ítem

Título: On w-Isbell-convexity
Autor: Olela Otafudu, Olivier Sebogodi, Katlego
Fecha difusión:
Resumen:
[EN] Chistyakov introduced and developed a concept of modular metric for an arbitrary set in order to generalise the classical notion of modular on a linear space. In this article, we introduce the theory of hyperconvexity ...[+]
Palabras clave: Modular pseudometric , Isbell-convexity , w-Isbell-convexity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.15739
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.15739
Tipo: Artículo

References

A. A. N. Abdou, Fixed points of Kannan maps in modular metric spaces, AIMS Maths 5 (2020), 6395-6403.

https://doi.org/10.3934/math.2020411

A. A. N. Abdou and M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl. 2013 (2013):163. [+]
A. A. N. Abdou, Fixed points of Kannan maps in modular metric spaces, AIMS Maths 5 (2020), 6395-6403.

https://doi.org/10.3934/math.2020411

A. A. N. Abdou and M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl. 2013 (2013):163.

https://doi.org/10.1186/1687-1812-2013-163

C. Alaca, M. E. Ege and C. Park, Fixed point results for modular ultrametric spaces, J. Comput. Anal. Appl. 20 (2016), 1259-1267.

A. H. Ansari, M. Demma, L. Guran, J. R. Lee and C. Park, Fixed point results for C-class functions in modular metric spaces. J. Fixed Point Theory Appl. 20, no. 3 (2018), Paper No. 103.

https://doi.org/10.1007/s11784-018-0580-z

V. V. Chistyakov, A fixed point theorem for contractions in modular metric spaces, arXiv:1112.5561.

V. V. Chistyakov, Metric modular spaces: Theory and applications, SpringerBriefs in Mathematics, Springer, Switzerland, 2015.

https://doi.org/10.1007/978-3-319-25283-4

V. V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math. 15 (2008), 3-24.

V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal. 72 (2010), 1-14.

https://doi.org/10.1016/j.na.2009.04.057

S. Cobzas, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, 2012.

https://doi.org/10.1007/978-3-0348-0478-3

M. E. Ege and C. Alaca, Fixed point results and an application to homotopy in modular metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 900-908.

https://doi.org/10.22436/jnsa.008.06.01

M. E. Ege and C. Alaca, Some properties of modular S-metric spaces and its fixed point results, J. Comput. Anal. Appl. 20 (2016), 24-33.

M. E. Ege and C. Alaca, Some results for modular b-metric spaces and an application to system of linear equations, Azerb. J. Math. 8 (2018), 3-14.

R. Espínola and M. A. Khamsi, Introduction to hyperconvex spaces, in: Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht, The Netherlands (2001), pp. 39135.

https://doi.org/10.1007/978-94-017-1748-9_13

A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic and M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Math. 6 (2021), 1781-1799.

https://doi.org/10.3934/math.2021107

H. Hosseinzadeh and V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric spaces, Asian-Eur. J. Math. 13 (2020): 2050087.

https://doi.org/10.1142/S1793557120500874

E. Kemajou, H.-P. Künzi and O. Olela Otafudu, The Isbell-hull of di-space, Topology Appl. 159 (2012), 2463-2475.

https://doi.org/10.1016/j.topol.2011.02.016

M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics, Wiley-Interscience, New York, NY, USA, 2001.

https://doi.org/10.1002/9781118033074

H.-P. Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486 (2009), 239-304.

https://doi.org/10.1090/conm/486/09511

H.-P. Künzi and O. Olela Otafudu, q-hyperconvexity in quasipseudometric spaces and fixed point theorems, J. Funct. Spaces Appl. 2012 (2012): Art. ID 765903.

https://doi.org/10.1155/2012/765903

N. Kumar and R. Chugh, Convergence and stability results for new three step iteration process in modular spaces, Aust. J. Math. Anal. Appl. 14 (2017): 14.

Y. Mutemwa, O. Olela Otafudu and H. Sabao, On gluing of quasi-pseudometric spaces, Khayyam J. Math. 6 (2020), 129-140.

O. Olela Otafudu, On one-local retract in quasi-metric spaces, Topology Proc. 45 (2015), 271-281.

O. Olela Otafudu and H. Sabao, Set-valued contractions and $q$-hyperconvex spaces, J. Nonlinear Convex Anal. 18 (2017), 1609-1617.

https://doi.org/10.4995/agt.2017.5818

R. C. Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal. 3 (1979), 885-890.

https://doi.org/10.1016/0362-546X(79)90055-5

H. Sabao and O. Olela Otafudu, On soft quasi-pseudometric spaces, Appl. Gen. Topol. 22 (2021), 17-30.

https://doi.org/10.4995/agt.2021.13084

S. Salbany, Injective objects and morphisms, in: Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, Prague, 1988, World Sci. Publ., Teaneck, NJ, 1989, pp. 394-409.

S. Yamamuro, On conjugate space of Nakano space, Trans. Amer. Math. Soc. 90 (1959), 291-311.

https://doi.org/10.1090/S0002-9947-1959-0132378-1

C. I. Zhu, J. Chen, X. J. Huang and J. H. Chen, Fixed point theorems in modular spaces with simulation functions and altering distance functions with applications, J. Nonlinear Convex Anal. 21 (2020), 1403-1424.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem