- -

Supersymmetry in the time domain and its applications in optics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supersymmetry in the time domain and its applications in optics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Meca, Carlos es_ES
dc.contributor.author Macho-Ortiz, Andrés es_ES
dc.contributor.author Llorente, Roberto es_ES
dc.date.accessioned 2022-05-31T18:04:41Z
dc.date.available 2022-05-31T18:04:41Z
dc.date.issued 2020-02-10 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183011
dc.description.abstract [EN] Supersymmetry is a conjectured symmetry between bosons and fermions aiming at solving fundamental questions in string and quantum field theory. Its subsequent application to quantum mechanics led to a ground-breaking analysis and design machinery, later fruitfully extrapolated to photonics. In all cases, the algebraic transformations of quantum-mechanical supersymmetry were conceived in the space realm. Here, we demonstrate that Maxwell's equations, as well as the acoustic and elastic wave equations, also possess an underlying supersymmetry in the time domain. We explore the consequences of this property in the field of optics, obtaining a simple analytic relation between the scattering coefficients of numerous time-varying systems, and uncovering a wide class of reflectionless, three dimensional, all-dielectric, isotropic, omnidirectional, polarisation-independent, non-complex media. Temporal supersymmetry is also shown to arise in dispersive media supporting temporal bound states, which allows engineering their momentum spectra and dispersive properties. These unprecedented features may enable the creation of novel reconfigurable devices, including invisible materials, frequency shifters, isolators, and pulse-shape transformers es_ES
dc.description.sponsorship This work was supported by Spanish National Plan projects TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE) and MINECO/FEDER UE XCORE TEC2015-70858-C2-1-R, as well as Generalitat Valenciana Plan project NXTIC AICO/2018/324. A.M.O.'s work was supported by BES-2013-062952 F.P.I. Grant es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Supersymmetry es_ES
dc.subject Time-varying es_ES
dc.subject Invisibility es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Supersymmetry in the time domain and its applications in optics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-020-14634-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2013-062952/ES/BES-2013-062952/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2018%2F324//NEXT-GENERATION BEYOND-5G SUB-THz IN-HOME PICO-CELLULAR CONNECTIVITY (NXTIC)./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-70858-C2-1-R/ES/TECNOLOGIA DE TRANSMISION OPTICA MEDIANTE MULTIPLEXACION MULTIDIMENSIONAL EN FIBRA MULTI-NUCLEO PARA REDES OPTICAS DE ACCESO Y DE TRANSPORTE CELULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-73581-JIN/ES/HACIA UNA NUEVA GENERACION DE CIRCUITOS INTEGRADOS FOTONICOS BASADOS EN OPTICA DE TRANSFORMACION, METASUPERFICIES Y MATERIALES RECONFIGURABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation García Meca, C.; Macho-Ortiz, A.; Llorente, R. (2020). Supersymmetry in the time domain and its applications in optics. Nature Communications. 11(1):1-8. https://doi.org/10.1038/s41467-020-14634-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-020-14634-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32041950 es_ES
dc.identifier.pmcid PMC7010821 es_ES
dc.relation.pasarela S\403276 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.description.references Gol’fand, Y. A. & Likhtman, E. P. Extension of the algebra of Poincare group generators and violation of P invariance. JETP Lett. 13, 452 (1971). es_ES
dc.description.references Ramond, P. Dual theory for free fermions. Phys. Rev. D. 3, 2415 (1971). es_ES
dc.description.references Neveu, A. & Schwarz, J. H. Factorizable dual model of pions. Nucl. Phys. B 31, 86 (1971). es_ES
dc.description.references Wess, J. & Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B 70, 39 (1974). es_ES
dc.description.references Freedman, D. Z., van Nieuwenhuizen, P. & Ferrara, S. Progress toward a theory of supergravity. Phys. Rev. D. 13, 3214 (1976). es_ES
dc.description.references Cooper, F., Khare, A. & Sukhatme, U. Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995). es_ES
dc.description.references Ulmer, K. A. Supersymmetry: experimental status. Preprint at https://arxiv.org/abs/1601.03774 (2016). es_ES
dc.description.references Chumakov, S. M. & Wolf, K. B. Supersymmetry in Helmholtz optics. Phys. Lett. A 193, 51 (1994). es_ES
dc.description.references Miri, M.-A., Heinrich, M., El-Ganainy, R. & Christodoulides, D. N. Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013). es_ES
dc.description.references Miri, M.-A., Heinrich, M. & Christodoulides, D. N. SUSY-inspired one-dimensional transformation optics. Optica 1, 89–95 (2014). es_ES
dc.description.references Heinrich, M. et al. Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014). es_ES
dc.description.references Macho, A., Llorente, R. & García-Meca, C. Supersymmetric transformations in optical fibers. Phys. Rev. Appl 9, 014024 (2018). es_ES
dc.description.references Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623 (2019). es_ES
dc.description.references Macho, A. Multi-core fiber and optical supersymmetry: theory and applications. PhD Thesis, Universitat Politècnica de València (2019). es_ES
dc.description.references Baggrov, V. G. & Samsonov, B. F. Supersymmetry of a nonstationary Schrödinger equation. Phys. Lett. A 210, 60 (1996). es_ES
dc.description.references Schulze-Halberg, A. & Jimenez, J. M. C. Supersymmetry of generalized linear Schrödinger equations in (1 + 1) dimensions. Symmetry 1, 115–144 (2009). es_ES
dc.description.references Yanik, M. F. & Fan, S. Time reversal of light with linear optics and modulators. Phys. Rev. Lett. 93, 173903 (2004). es_ES
dc.description.references Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon 11, 774–783 (2017). es_ES
dc.description.references Koutserimpas, T. T. & Fleury, R. Nonreciprocal gain in non-hermitian time-Floquet systems. Phys. Rev. Lett. 120, 087401 (2018). es_ES
dc.description.references Vezzoli, S. et al. Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2018). es_ES
dc.description.references Lustig, E., Sharabi, Y. & Segev, M. Topological aspects of photonic time crystals. Optica 5, 1390–1395 (2018). es_ES
dc.description.references Law, C. K. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys. Rev. A 49, 433 (1994). es_ES
dc.description.references Kord, A., Sounas, D. L. & Alù, A. Magnet-less circulators based on spatiotemporal modulation of bandstop filters in a delta topology. IEEE Trans. Microw. Theory Tech. 66, 911–926 (2018). es_ES
dc.description.references Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018). es_ES
dc.description.references Wang, Q. et al. Acoustic asymmetric transmission based on time-dependent dynamical scattering. Sci. Rep. 5, 10880 (2015). es_ES
dc.description.references Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016). es_ES
dc.description.references Trainiti, G. et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Phys. Rev. Lett. 122, 124301 (2019). es_ES
dc.description.references Mendonça, J. T. & Shukla, P. K. Time refraction and time reflection: two basic concepts. Phys. Scr. 65, 160–163 (2002). es_ES
dc.description.references Horsley, S. A. R. & Bugler-Lamb, S. Negative frequencies in wave propagation: a microscopic model. Phys. Rev. A 93, 063828 (2016). es_ES
dc.description.references Philbin, T. G. et al. Fiber-optical analog of the Event Horizon. Science 319, 1367 (2008). es_ES
dc.description.references Leonhardt, U. & Philbin, T. G. Geometry and Light: The Science of Invisibility. (Dover Publications, New York, 2010). es_ES
dc.description.references Horsley, S. A. R., Artoni, M. & La Rocca, G. C. Spatial Kramers-Kronig relations and the reflection of waves. Nat. Photon 9, 436–439 (2015). es_ES
dc.description.references Xiao, Y., Maywar, D. N. & Agrawal, G. P. Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett. 39, 574–577 (2014). es_ES
dc.description.references Ma, Y. G., Ong, C. K., Tyc, T. & Leonhardt, U. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nat. Mater. 8, 639–642 (2009). es_ES
dc.description.references Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). es_ES
dc.description.references Haffner, C. et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon 9, 525–528 (2015). es_ES
dc.description.references Berry, M. V. Fake Airy functions and the asymptotics of reflectionlessness. J. Phys. A: Math. Gen. 23, L243–L246 (1990). es_ES
dc.description.references Berry, M. V. Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009). es_ES
dc.description.references Shi, Y., Han, S. & Fan, S. Optical circulation and isolation based on indirect photonic transitions of guided resonance modes. ACS Photonics 4, 1639–1645 (2017). es_ES
dc.description.references Lee, K. et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photon 12, 765–773 (2018). es_ES
dc.description.references Cummer, S. A. & Thompson, R. T. Frequency conversion by exploiting time in transformation optics. J. Opt. 13, 024007 (2010). es_ES
dc.description.references Plansinis, B. W., Donaldson, W. R. & Agrawal, G. P. What is the temporal analog of reflection and refraction of optical beams? Phys. Rev. Lett. 115, 183901 (2015). es_ES
dc.description.references Plansinis, B. W., Donaldson, W. R. & Agrawal, G. P. Temporal waveguides for optical pulses. J. Opt. Soc. Am. B 33, 1112–1119 (2016). es_ES
dc.description.references Zhou, J., Zheng, G. & Wu, J. Comprehensive study on the concept of temporal optical waveguides. Phys. Rev. A 93, 063847 (2016). es_ES
dc.description.references Birks, T. A., Gris-Sánchez, I., Yerolatsitis, S., Leon-Saval, S. G. & Thomson, R. R. The photonic lantern. Adv. Opt. Photonics 7, 107–167 (2015). es_ES
dc.description.references Vázquez, J. M., Mazilu, M., Miller, A. & Galbraith, I. Wavelet transforms for optical pulse analysis. J. Opt. Soc. Am. A 22, 2890–2899 (2005). es_ES
dc.description.references Dantus, M. & Lozovoy, V. V. Experimental coherent laser control of physicochemical processes. Chem. Rev. 104, 1813–1860 (2004). es_ES
dc.description.references Weiner, A. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011). es_ES
dc.description.references Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 6167 (2014). es_ES
dc.description.references Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 6287 (2016). es_ES
dc.description.references Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016). es_ES
dc.description.references Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019). es_ES
dc.description.references Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016). es_ES
dc.description.references Cheng, C.-H. et al. Strong optical nonlinearity of the nonstoichiometric silicon carbide. J. Mater. Chem. C. 3, 10164–10176 (2015). es_ES
dc.description.references Leonardis, F. D., Soref, R. A. & Passaro, V. M. N. Dispersion of nonresonant third-order nonlinearities in silicon carbide. Sci. Rep. 7, 40924 (2017). es_ES
dc.description.references Michel, A.-K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013). es_ES
dc.description.references Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon 10, 60–65 (2016). es_ES
dc.description.references Wang, W. J. et al. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett. 93, 043121 (2008). es_ES
dc.description.references Tinten, K. S. et al. Dynamics of ultrafast phase changes in amorphous GeSb films. Phys. Rev. Lett. 81, 3679 (1998). es_ES
dc.description.references Findchips, https://www.findchips.com/parametric/Diodes/Varactors (2019). es_ES
dc.description.references Qin, S., Xu, Q. & Wang, Y. E. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Tech. 62, 2260–2272 (2014). es_ES
dc.description.references Wang, Y. E. Time-varying transmission lines (TVTL)—a new pathway to non-reciprocal and intelligent RF front-ends. in IEEE Radio and Wireless Symposium, 148–150 (2014). es_ES
dc.description.references Brysev, A. P., Krutyanskii, L. M. & Preobrazhenskii, V. L. Wave phase conjugation of ultrasonic beams. Phys.-Uspekhi 41, 793–805 (1998). es_ES
dc.description.references Chen, Z. et al. A tunable acoustic metamaterial with double-negativity driven by electromagnets. Sci. Rep. 6, 30254 (2016). es_ES
dc.description.references Popa, B.-I., Shinde, D., Konneker, A. & Cummer, S. A. Active acoustic metamaterials reconfigurable in real time. Phys. Rev. B 91, 220303(R) (2015). es_ES
dc.description.references Airoldi, L. & Ruzzene, M. Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. N. J. Phys. 13, 113010 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem