Mostrar el registro sencillo del ítem
dc.contributor.author | Gonçalves, A. | es_ES |
dc.contributor.author | Montoya, M. F. | es_ES |
dc.contributor.author | Llorens Rodríguez, Roberto | es_ES |
dc.contributor.author | Bermúdez i Badia, S. | es_ES |
dc.date.accessioned | 2022-06-21T18:04:15Z | |
dc.date.available | 2022-06-21T18:04:15Z | |
dc.date.issued | 2021-04-03 | es_ES |
dc.identifier.issn | 1359-4338 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183531 | |
dc.description.abstract | [EN] Balance disorders can have substantial adverse implications on the performance of daily activities and lead to an increased risk of falls, which often have severe negative consequences for older adults. Quantitative assessment through computerized force plate-based posturography enables objective assessment of postural control but could not successfully represent specific abilities required during daily activities. The use of virtual reality (VR) could improve the representative design of functional activities and increase the ecological validity of posturographic tests, which would enhance the transferability of results to the real world. In this work, we investigate the feasibility of a simulated bus ride experienced in a surround-screen VR system to assess balance with increased ecological validity. Participants were first evaluated with a posturography test and then with the VR-based bus ride test, while the reactions of their centre of pressure were registered. Lastly, participants provided self-reported measures of the elicited sense of presence during the test. A total of 16 healthy young adults completed the study. Results showed that the simulation could elicit significant medial-lateral excursions of the centre of pressure in response to variations in the optical flow. Furthermore, these responses' amplitude negatively correlated with the participants' posturography excursions when fixating a target. Although the sense of presence was moderate, likely due to the passive nature of the test, the results support the feasibility of our proposed paradigm, based in the context of a meaningful daily living activity, in assessing balance control components | es_ES |
dc.description.sponsorship | This work was supported by the Fundacao para a Ciencia e Tecnologia through the AHA project (CMUPERI/HCI/0046/2013), and NOVA-LINCS (UID/CEC/04516/2019), by the INTERREG program through the MACBIOIDI project (MAC/1.1.b/098), by project VALORA, Grant 201701-10 of the Fundacio la Marato de la TV3 (Barcelona, Spain) and the European Union through the Operational Program of the European Regional Development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Virtual Reality | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Virtual reality | es_ES |
dc.subject | Balance assessment | es_ES |
dc.subject | Posturography | es_ES |
dc.subject | Ecological validity | es_ES |
dc.subject | Visual motion | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10055-021-00521-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5665-PICT/CMUP-ERI/HCI%2F0046%2F2013/PT/Augmented Human Assistance/AHA | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F029//LENI INFRAESTRUCTURAS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/ 6817-DCRRNI ID/UID%2FCEC%2F04516%2F2019/PT/Laboratory for Computer Science and Informatics/NOVA-LINCS | |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació La Marató de TV3//201701-10/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Gonçalves, A.; Montoya, MF.; Llorens Rodríguez, R.; Bermúdez I Badia, S. (2021). A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study. Virtual Reality. 1-9. https://doi.org/10.1007/s10055-021-00521-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10055-021-00521-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\438073 | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.contributor.funder | Fundació La Marató de TV3 | |
dc.description.references | Allum JH, Gresty M, Keshner E, Shupert C (1997) The control of head movements during human balance corrections. J Vestib Res 7:189–218 | es_ES |
dc.description.references | Bermúdez i Badia S, Fluet GG, Llorens R, Deutsch JE (2016) Virtual reality for sensorimotor rehabilitation post stroke: design principles and evidence. In: Reinkensmeyer DJ, Dietz V (eds) Neurorehabilitation technology. Springer, Cham, pp 573–603. https://doi.org/10.1007/978-3-319-28603-7_28 | es_ES |
dc.description.references | Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba Huy P, Yelnik AP (2004) Reliance on visual information after stroke. Part I: balance on dynamic posturography. Arch Phys Med Rehabil 85:268–273. https://doi.org/10.1016/j.apmr.2003.06.017 | es_ES |
dc.description.references | Borrego A, Latorre J, Llorens R, Alcañiz M, Noé E (2016) Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. J Neuroeng Rehabil 13:68. https://doi.org/10.1186/s12984-016-0174-1 | es_ES |
dc.description.references | Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40:36–43. https://doi.org/10.1109/MC.2007.257 | es_ES |
dc.description.references | Bronfenbrenner U (1977) Toward an experimental ecology of human development. Am Psychol 32:513–531. https://doi.org/10.1037/0003-066X.32.7.513 | es_ES |
dc.description.references | Burdea GC, Coiffet P (2003) Virtual reality technology, 2nd edn. Wiley, Hoboken | es_ES |
dc.description.references | Claesson IM, Grooten WJ, Lökk J, Ståhle A (2017) Assessing postural balance in early Parkinson’s Disease—validity of the BDL balance scale. Physiother Theory Pract 33:490–496. https://doi.org/10.1080/09593985.2017.1318424 | es_ES |
dc.description.references | Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M (2010) Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31:307–310. https://doi.org/10.1016/j.gaitpost.2009.11.012 | es_ES |
dc.description.references | Clark RA, McGough R, Paterson K (2011) Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 34:288–291. https://doi.org/10.1016/j.gaitpost.2011.04.010 | es_ES |
dc.description.references | Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The CAVE: audio visual experience automatic virtual environment. Commun ACM 35:64–72. https://doi.org/10.1145/129888.129892 | es_ES |
dc.description.references | Elion O, Sela I, Bahat Y, Siev-Ner I, Weiss PL, Karni A (2015) Balance maintenance as an acquired motor skill: delayed gains and robust retention after a single session of training in a virtual environment. Brain Res 1609:54–62. https://doi.org/10.1016/j.brainres.2015.03.020 | es_ES |
dc.description.references | Giboin L-S, Gruber M, Kramer A (2015) Task-specificity of balance training. Hum Mov Sci 44:22–31. https://doi.org/10.1016/j.humov.2015.08.012 | es_ES |
dc.description.references | Gonçalves A, Bermúdez S (2018) KAVE: building kinect based CAVE automatic virtual environments, methods for surround-screen projection management, motion parallax and full-body interaction support. Proc ACM Hum-Comput Interact 2:10:1-10:15. https://doi.org/10.1145/3229092 | es_ES |
dc.description.references | Gonçalves A, Borrego A, Latorre J, Llorens R, Bermúdez i Badia S (2021) Evaluation of the tracking accuracy, sense of presence, and cybersickness of a low-cost virtual reality surround-screen projection systems powered by the KAVE open-source software. IEEE Trans Vis Comput Graph (accepted) | es_ES |
dc.description.references | Horak FB, Wrisley DM, Frank J (2009) The Balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther 89:484–498. https://doi.org/10.2522/ptj.20080071 | es_ES |
dc.description.references | Huurnink A, Fransz DP, Kingma I, van Dieën JH (2013) Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech 46:1392–1395. https://doi.org/10.1016/j.jbiomech.2013.02.018 | es_ES |
dc.description.references | Jerald J (2015) The VR book: human-centered design for virtual reality. Morgan & Claypool, New York | es_ES |
dc.description.references | Llorens R, Latorre J, Noé E, Keshner EA (2016) Posturography using the Wii Balance BoardTM: a feasibility study with healthy adults and adults post-stroke. Gait Posture 43:228–232. https://doi.org/10.1016/j.gaitpost.2015.10.002 | es_ES |
dc.description.references | Lord SR, Clark RD (1996) Simple physiological and clinical tests for the accurate prediction of falling in older people. GER 42:199–203. https://doi.org/10.1159/000213793 | es_ES |
dc.description.references | Mancini M, Horak FB (2010) The relevance of clinical balance assessment tools to differentiate balance deficits. Eur J Phys Rehabil Med 46:239–248 | es_ES |
dc.description.references | Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Kubota K (2012) Cortical control of postural balance in patients with hemiplegic stroke. NeuroReport 23:314–319. https://doi.org/10.1097/WNR.0b013e328351757b | es_ES |
dc.description.references | Morel M, Bideau B, Lardy J, Kulpa R (2015) Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol Clin/Clin Neurophysiol Spec Issue Bal Gait 45:315–326. https://doi.org/10.1016/j.neucli.2015.09.007 | es_ES |
dc.description.references | Naumann T, Kindermann S, Joch M, Munzert J, Reiser M (2015) No transfer between conditions in balance training regimes relying on tasks with different postural demands: specificity effects of two different serious games. Gait Posture 41:774–779. https://doi.org/10.1016/j.gaitpost.2015.02.003 | es_ES |
dc.description.references | Navalón N, Verdecho I, Llorens R, Colomer C, Sanchez-Leiva C, Martinez-Crespo G, Moliner B, Ferri J, Noé E (2014) Progression of posturographic findings after acquired brain injury. Brain Inj 28:1417–1424. https://doi.org/10.3109/02699052.2014.917200 | es_ES |
dc.description.references | Pardasaney PK, Slavin MD, Wagenaar RC, Latham NK, Ni P, Jette AM (2013) Conceptual limitations of balance measures for community-dwelling older adults. Phys Ther 93:1351–1368. https://doi.org/10.2522/ptj.20130028 | es_ES |
dc.description.references | Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention. Age Age 35:ii37–ii41. https://doi.org/10.1093/ageing/afl084 | es_ES |
dc.description.references | Salzman B (2010) Gait and balance disorders in older adults. AFP 82:61–68 | es_ES |
dc.description.references | Sherman WR, Craig AB (2018) Understanding virtual reality: interface, application, and design. Morgan Kaufmann | es_ES |
dc.description.references | Slater M, Linakis V, Usoh M, Kooper R, Street G (1996) Immersion, presence, and performance in virtual environments: an experiment with tri-dimensional chess. Presented at the ACM virtual reality software and technology (VRST, pp. 163–172). | es_ES |
dc.description.references | Slater M, Steed A, Usoh M (1995) The virtual treadmill: a naturalistic metaphor for navigation in immersive virtual environments. In: Virtual environments '95, eurographics. Springer, Vienna, pp 135–148. https://doi.org/10.1007/978-3-7091-9433-1_12 | es_ES |
dc.description.references | Slater M, Wilbur S (1997) A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoper Virtual Environ 6:603–616. https://doi.org/10.1162/pres.1997.6.6.603 | es_ES |
dc.description.references | Teresa P, Ana F, Bermudez i Badia S (2019) Reh@City v2.0: a comprehensive virtual reality cognitive training system based on personalized and adaptive simulations of activities of daily living. Presented at the The Experiment@ International Conference 2019 (exp. at'19), IEEE, Funchal, Portugal | es_ES |
dc.description.references | Tyson SF, Connell LA (2009) How to measure balance in clinical practice. A systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clin Rehabil. https://doi.org/10.1177/0269215509335018 | es_ES |
dc.description.references | Visser JE, Carpenter MG, van der Kooij H, Bloem BR (2008) The clinical utility of posturography. Clin Neurophysiol 119:2424–2436. https://doi.org/10.1016/j.clinph.2008.07.220 | es_ES |
dc.description.references | Witmer BG, Jerome CJ, Singer MJ (2005) The factor structure of the presence questionnaire. Presence Teleoper Virtual Environ 14:298–312. https://doi.org/10.1162/105474605323384654 | es_ES |
dc.description.references | Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence Teleoper Virtual Environ 7:225–240. https://doi.org/10.1162/105474698565686 | es_ES |
dc.description.references | Yelnik AP, Kassouha A, Bonan IV, Leman MC, Jacq C, Vicaut E, Colle FM (2006) Postural visual dependence after recent stroke: assessment by optokinetic stimulation. Gait Posture 24:262–269. https://doi.org/10.1016/j.gaitpost.2005.09.007 | es_ES |