- -

A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonçalves, A. es_ES
dc.contributor.author Montoya, M. F. es_ES
dc.contributor.author Llorens Rodríguez, Roberto es_ES
dc.contributor.author Bermúdez i Badia, S. es_ES
dc.date.accessioned 2022-06-21T18:04:15Z
dc.date.available 2022-06-21T18:04:15Z
dc.date.issued 2021-04-03 es_ES
dc.identifier.issn 1359-4338 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183531
dc.description.abstract [EN] Balance disorders can have substantial adverse implications on the performance of daily activities and lead to an increased risk of falls, which often have severe negative consequences for older adults. Quantitative assessment through computerized force plate-based posturography enables objective assessment of postural control but could not successfully represent specific abilities required during daily activities. The use of virtual reality (VR) could improve the representative design of functional activities and increase the ecological validity of posturographic tests, which would enhance the transferability of results to the real world. In this work, we investigate the feasibility of a simulated bus ride experienced in a surround-screen VR system to assess balance with increased ecological validity. Participants were first evaluated with a posturography test and then with the VR-based bus ride test, while the reactions of their centre of pressure were registered. Lastly, participants provided self-reported measures of the elicited sense of presence during the test. A total of 16 healthy young adults completed the study. Results showed that the simulation could elicit significant medial-lateral excursions of the centre of pressure in response to variations in the optical flow. Furthermore, these responses' amplitude negatively correlated with the participants' posturography excursions when fixating a target. Although the sense of presence was moderate, likely due to the passive nature of the test, the results support the feasibility of our proposed paradigm, based in the context of a meaningful daily living activity, in assessing balance control components es_ES
dc.description.sponsorship This work was supported by the Fundacao para a Ciencia e Tecnologia through the AHA project (CMUPERI/HCI/0046/2013), and NOVA-LINCS (UID/CEC/04516/2019), by the INTERREG program through the MACBIOIDI project (MAC/1.1.b/098), by project VALORA, Grant 201701-10 of the Fundacio la Marato de la TV3 (Barcelona, Spain) and the European Union through the Operational Program of the European Regional Development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Virtual Reality es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Virtual reality es_ES
dc.subject Balance assessment es_ES
dc.subject Posturography es_ES
dc.subject Ecological validity es_ES
dc.subject Visual motion es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10055-021-00521-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5665-PICT/CMUP-ERI/HCI%2F0046%2F2013/PT/Augmented Human Assistance/AHA
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F029//LENI INFRAESTRUCTURAS/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/ 6817-DCRRNI ID/UID%2FCEC%2F04516%2F2019/PT/Laboratory for Computer Science and Informatics/NOVA-LINCS
dc.relation.projectID info:eu-repo/grantAgreement/Fundació La Marató de TV3//201701-10/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gonçalves, A.; Montoya, MF.; Llorens Rodríguez, R.; Bermúdez I Badia, S. (2021). A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility study. Virtual Reality. 1-9. https://doi.org/10.1007/s10055-021-00521-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10055-021-00521-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\438073 es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.contributor.funder Fundació La Marató de TV3
dc.description.references Allum JH, Gresty M, Keshner E, Shupert C (1997) The control of head movements during human balance corrections. J Vestib Res 7:189–218 es_ES
dc.description.references Bermúdez i Badia S, Fluet GG, Llorens R, Deutsch JE (2016) Virtual reality for sensorimotor rehabilitation post stroke: design principles and evidence. In: Reinkensmeyer DJ, Dietz V (eds) Neurorehabilitation technology. Springer, Cham, pp 573–603. https://doi.org/10.1007/978-3-319-28603-7_28 es_ES
dc.description.references Bonan IV, Colle FM, Guichard JP, Vicaut E, Eisenfisz M, Tran Ba Huy P, Yelnik AP (2004) Reliance on visual information after stroke. Part I: balance on dynamic posturography. Arch Phys Med Rehabil 85:268–273. https://doi.org/10.1016/j.apmr.2003.06.017 es_ES
dc.description.references Borrego A, Latorre J, Llorens R, Alcañiz M, Noé E (2016) Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. J Neuroeng Rehabil 13:68. https://doi.org/10.1186/s12984-016-0174-1 es_ES
dc.description.references Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40:36–43. https://doi.org/10.1109/MC.2007.257 es_ES
dc.description.references Bronfenbrenner U (1977) Toward an experimental ecology of human development. Am Psychol 32:513–531. https://doi.org/10.1037/0003-066X.32.7.513 es_ES
dc.description.references Burdea GC, Coiffet P (2003) Virtual reality technology, 2nd edn. Wiley, Hoboken es_ES
dc.description.references Claesson IM, Grooten WJ, Lökk J, Ståhle A (2017) Assessing postural balance in early Parkinson’s Disease—validity of the BDL balance scale. Physiother Theory Pract 33:490–496. https://doi.org/10.1080/09593985.2017.1318424 es_ES
dc.description.references Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M (2010) Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31:307–310. https://doi.org/10.1016/j.gaitpost.2009.11.012 es_ES
dc.description.references Clark RA, McGough R, Paterson K (2011) Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 34:288–291. https://doi.org/10.1016/j.gaitpost.2011.04.010 es_ES
dc.description.references Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The CAVE: audio visual experience automatic virtual environment. Commun ACM 35:64–72. https://doi.org/10.1145/129888.129892 es_ES
dc.description.references Elion O, Sela I, Bahat Y, Siev-Ner I, Weiss PL, Karni A (2015) Balance maintenance as an acquired motor skill: delayed gains and robust retention after a single session of training in a virtual environment. Brain Res 1609:54–62. https://doi.org/10.1016/j.brainres.2015.03.020 es_ES
dc.description.references Giboin L-S, Gruber M, Kramer A (2015) Task-specificity of balance training. Hum Mov Sci 44:22–31. https://doi.org/10.1016/j.humov.2015.08.012 es_ES
dc.description.references Gonçalves A, Bermúdez S (2018) KAVE: building kinect based CAVE automatic virtual environments, methods for surround-screen projection management, motion parallax and full-body interaction support. Proc ACM Hum-Comput Interact 2:10:1-10:15. https://doi.org/10.1145/3229092 es_ES
dc.description.references Gonçalves A, Borrego A, Latorre J, Llorens R, Bermúdez i Badia S (2021) Evaluation of the tracking accuracy, sense of presence, and cybersickness of a low-cost virtual reality surround-screen projection systems powered by the KAVE open-source software. IEEE Trans Vis Comput Graph (accepted) es_ES
dc.description.references Horak FB, Wrisley DM, Frank J (2009) The Balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther 89:484–498. https://doi.org/10.2522/ptj.20080071 es_ES
dc.description.references Huurnink A, Fransz DP, Kingma I, van Dieën JH (2013) Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech 46:1392–1395. https://doi.org/10.1016/j.jbiomech.2013.02.018 es_ES
dc.description.references Jerald J (2015) The VR book: human-centered design for virtual reality. Morgan & Claypool, New York es_ES
dc.description.references Llorens R, Latorre J, Noé E, Keshner EA (2016) Posturography using the Wii Balance BoardTM: a feasibility study with healthy adults and adults post-stroke. Gait Posture 43:228–232. https://doi.org/10.1016/j.gaitpost.2015.10.002 es_ES
dc.description.references Lord SR, Clark RD (1996) Simple physiological and clinical tests for the accurate prediction of falling in older people. GER 42:199–203. https://doi.org/10.1159/000213793 es_ES
dc.description.references Mancini M, Horak FB (2010) The relevance of clinical balance assessment tools to differentiate balance deficits. Eur J Phys Rehabil Med 46:239–248 es_ES
dc.description.references Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Kubota K (2012) Cortical control of postural balance in patients with hemiplegic stroke. NeuroReport 23:314–319. https://doi.org/10.1097/WNR.0b013e328351757b es_ES
dc.description.references Morel M, Bideau B, Lardy J, Kulpa R (2015) Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol Clin/Clin Neurophysiol Spec Issue Bal Gait 45:315–326. https://doi.org/10.1016/j.neucli.2015.09.007 es_ES
dc.description.references Naumann T, Kindermann S, Joch M, Munzert J, Reiser M (2015) No transfer between conditions in balance training regimes relying on tasks with different postural demands: specificity effects of two different serious games. Gait Posture 41:774–779. https://doi.org/10.1016/j.gaitpost.2015.02.003 es_ES
dc.description.references Navalón N, Verdecho I, Llorens R, Colomer C, Sanchez-Leiva C, Martinez-Crespo G, Moliner B, Ferri J, Noé E (2014) Progression of posturographic findings after acquired brain injury. Brain Inj 28:1417–1424. https://doi.org/10.3109/02699052.2014.917200 es_ES
dc.description.references Pardasaney PK, Slavin MD, Wagenaar RC, Latham NK, Ni P, Jette AM (2013) Conceptual limitations of balance measures for community-dwelling older adults. Phys Ther 93:1351–1368. https://doi.org/10.2522/ptj.20130028 es_ES
dc.description.references Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention. Age Age 35:ii37–ii41. https://doi.org/10.1093/ageing/afl084 es_ES
dc.description.references Salzman B (2010) Gait and balance disorders in older adults. AFP 82:61–68 es_ES
dc.description.references Sherman WR, Craig AB (2018) Understanding virtual reality: interface, application, and design. Morgan Kaufmann es_ES
dc.description.references Slater M, Linakis V, Usoh M, Kooper R, Street G (1996) Immersion, presence, and performance in virtual environments: an experiment with tri-dimensional chess. Presented at the ACM virtual reality software and technology (VRST, pp. 163–172). es_ES
dc.description.references Slater M, Steed A, Usoh M (1995) The virtual treadmill: a naturalistic metaphor for navigation in immersive virtual environments. In: Virtual environments '95, eurographics. Springer, Vienna, pp 135–148. https://doi.org/10.1007/978-3-7091-9433-1_12 es_ES
dc.description.references Slater M, Wilbur S (1997) A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoper Virtual Environ 6:603–616. https://doi.org/10.1162/pres.1997.6.6.603 es_ES
dc.description.references Teresa P, Ana F, Bermudez i Badia S (2019) Reh@City v2.0: a comprehensive virtual reality cognitive training system based on personalized and adaptive simulations of activities of daily living. Presented at the The Experiment@ International Conference 2019 (exp. at'19), IEEE, Funchal, Portugal es_ES
dc.description.references Tyson SF, Connell LA (2009) How to measure balance in clinical practice. A systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clin Rehabil. https://doi.org/10.1177/0269215509335018 es_ES
dc.description.references Visser JE, Carpenter MG, van der Kooij H, Bloem BR (2008) The clinical utility of posturography. Clin Neurophysiol 119:2424–2436. https://doi.org/10.1016/j.clinph.2008.07.220 es_ES
dc.description.references Witmer BG, Jerome CJ, Singer MJ (2005) The factor structure of the presence questionnaire. Presence Teleoper Virtual Environ 14:298–312. https://doi.org/10.1162/105474605323384654 es_ES
dc.description.references Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence Teleoper Virtual Environ 7:225–240. https://doi.org/10.1162/105474698565686 es_ES
dc.description.references Yelnik AP, Kassouha A, Bonan IV, Leman MC, Jacq C, Vicaut E, Colle FM (2006) Postural visual dependence after recent stroke: assessment by optokinetic stimulation. Gait Posture 24:262–269. https://doi.org/10.1016/j.gaitpost.2005.09.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem