- -

MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuster García, Elíes es_ES
dc.contributor.author Lorente Estellés, David es_ES
dc.contributor.author Álvarez-Torres, María del Mar es_ES
dc.contributor.author Juan-Albarracín, Javier es_ES
dc.contributor.author Chelebian-Kocharyan, Eduard Artur es_ES
dc.contributor.author Rovira, Alex es_ES
dc.contributor.author Auger Acosta, Cristina es_ES
dc.contributor.author Pineda, Jose es_ES
dc.contributor.author Oleaga, Laura es_ES
dc.contributor.author Mollá-Olmos, Enrique es_ES
dc.contributor.author Filice, Silvano es_ES
dc.contributor.author Due-Tonnessen, Paulina es_ES
dc.contributor.author Meling, Torstein R. es_ES
dc.contributor.author Emblem, Kyrre E. es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.date.accessioned 2022-07-04T18:04:09Z
dc.date.available 2022-07-04T18:04:09Z
dc.date.issued 2021-03 es_ES
dc.identifier.issn 0938-7994 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183798
dc.description.abstract [EN] Objectives To assess the combined role of tumor vascularity, estimated from perfusion MRI, andMGMTmethylation status on overall survival (OS) in patients with glioblastoma. Methods A multicentric international dataset including 96 patients from NCT03439332 clinical study were used to study the prognostic relationships betweenMGMTand perfusion markers. Relative cerebral blood volume (rCBV) in the most vascularized tumor regions was automatically obtained from preoperative MRIs using ONCOhabitats online analysis service. Cox survival regression models and stratification strategies were conducted to define a subpopulation that is particularly favored byMGMTmethylation in terms of OS. Results rCBV distributions did not differ significantly (p > 0.05) in the methylated and the non-methylated subpopulations. In patients with moderately vascularized tumors (rCBV < 10.73),MGMTmethylation was a positive predictive factor for OS (HR = 2.73,p = 0.003, AUC = 0.70). In patients with highly vascularized tumors (rCBV > 10.73), however, there was no significant effect ofMGMTmethylation (HR = 1.72,p = 0.10, AUC = 0.56). Conclusions Our results indicate the existence of complementary prognostic information provided byMGMTmethylation and rCBV. Perfusion markers could identify a subpopulation of patients who will benefit the most fromMGMTmethylation. Not considering this information may lead to bias in the interpretation of clinical studies. es_ES
dc.description.sponsorship Open Access funding provided by University of Oslo (incl Oslo University Hospital). This study has received funding from MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R) (JMGG); H2020-SC12016-CNECT Project (No. 727560) (JMGG), H2020-SC1-BHC-20182020 (No. 825750) (JMGG), the European Research Council (ERC) under the European Union's Horizon 2020 (Grant Agreement No. 758657), the South-Eastern Norway Regional Health Authority Grants 2017073 and 2013069, the Research Council of Norway Grants 261984 (KEE). M.A.T was supported by Programa Estatal de Promocion del Talento y su Empleabilidad en I+D+i (DPI2016-80054-R). E.F.G was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (No. 844646). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof European Radiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Perfusion imaging es_ES
dc.subject Glioblastoma es_ES
dc.subject O(6)-Methylguanine-DNA methyltransferase es_ES
dc.subject Prognostic factors es_ES
dc.subject Temozolomide es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00330-020-07297-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727560/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCN//261984/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/758657/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2017073/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825750/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2013069/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-80054-R//BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE PROSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/844646/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Fuster García, E.; Lorente Estellés, D.; Álvarez-Torres, MDM.; Juan-Albarracín, J.; Chelebian-Kocharyan, EA.; Rovira, A.; Auger Acosta, C.... (2021). MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas. European Radiology. 31(3):1738-1747. https://doi.org/10.1007/s00330-020-07297-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00330-020-07297-4 es_ES
dc.description.upvformatpinicio 1738 es_ES
dc.description.upvformatpfin 1747 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 33001310 es_ES
dc.identifier.pmcid PMC7880975 es_ES
dc.relation.pasarela S\452522 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Research Council of Norway es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder South-Eastern Norway Regional Health Authority es_ES
dc.description.references Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol 19:v1–v88. https://doi.org/10.1093/neuonc/nox158 es_ES
dc.description.references Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. https://doi.org/10.1056/NEJMra0708126 es_ES
dc.description.references Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193. https://doi.org/10.3322/caac.20069 es_ES
dc.description.references Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1 es_ES
dc.description.references Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7 es_ES
dc.description.references Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331 es_ES
dc.description.references Gorlia T, van den Bent MJ, Hegi ME et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9:29–38. https://doi.org/10.1016/S1470-2045(07)70384-4 es_ES
dc.description.references Rivera AL, Pelloski CE, Gilbert MR et al (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116–121. https://doi.org/10.1093/neuonc/nop020 es_ES
dc.description.references Russell SM, Elliott R, Forshaw D, Golfinos JG, Nelson PK, Kelly PJ (2009) Glioma vascularity correlates with reduced patient survival and increased malignancy. Surg Neurol 72:242–246; discussion 246-247. https://doi.org/10.1016/j.surneu.2008.11.012 es_ES
dc.description.references Batchelor TT, Gerstner ER, Emblem KE et al (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci U S A 110:19059–19064. https://doi.org/10.1073/pnas.1318022110 es_ES
dc.description.references Ulyte A, Katsaros VK, Liouta E et al (2016) Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 58:1197–1208. https://doi.org/10.1007/s00234-016-1741-7 es_ES
dc.description.references Yoo R-E, Yun TJ, Hwang I et al (2020) Arterial spin labeling perfusion-weighted imaging aids in prediction of molecular biomarkers and survival in glioblastomas. Eur Radiol 30:1202–1211. https://doi.org/10.1007/s00330-019-06379-2 es_ES
dc.description.references Fuster-Garcia E, Juan-Albarracín J, García-Ferrando GA et al (2018) Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signatures. NMR Biomed 31:e4006. https://doi.org/10.1002/nbm.4006 es_ES
dc.description.references Hou BL, Wen S, Katsevman GA et al (2018) Magnetic resonance imaging parameters and their impact on survival of patients with glioblastoma: tumor perfusion predicts survival. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.12.085 es_ES
dc.description.references Juan-Albarracín J, Fuster-Garcia E, Pérez-Girbés A et al (2018) Glioblastoma: vascular habitats detected at preoperative dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging predict survival. Radiology 287:944–954. https://doi.org/10.1148/radiol.2017170845 es_ES
dc.description.references Chang Y-CC, Ackerstaff E, Tschudi Y et al (2017) Delineation of tumor habitats based on dynamic contrast enhanced MRI. Sci Rep 7:9746. https://doi.org/10.1038/s41598-017-09932-5 es_ES
dc.description.references Álvarez-Torres MDM, Juan-Albarracín J, Fuster-Garcia E et al (2019) Robust association between vascular habitats and patient prognosis in glioblastoma: an international multicenter study. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26958 es_ES
dc.description.references Wu H, Tong H, Du X et al (2020) Vascular habitat analysis based on dynamic susceptibility contrast perfusion MRI predicts IDH mutation status and prognosis in high-grade gliomas. Eur Radiol. https://doi.org/10.1007/s00330-020-06702-2 es_ES
dc.description.references Multicentre validation of how vascular biomarkers from tumor can predict the survival of the patient with glioblastoma - full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03439332. Accessed 24 Apr 2019 es_ES
dc.description.references Brett M, Johnsrude IS, Owen AM (2002) The problem of functional localization in the human brain. Nat Rev Neurosci 3:243–249. https://doi.org/10.1038/nrn756 es_ES
dc.description.references Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31:192–203. https://doi.org/10.1002/jmri.22003 es_ES
dc.description.references Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025 es_ES
dc.description.references Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320. https://doi.org/10.1109/TMI.2010.2046908 es_ES
dc.description.references Juan-Albarracín J, Fuster-Garcia E, García-Ferrando GA, García-Gómez JM (2019) ONCOhabitats: a system for glioblastoma heterogeneity assessment through MRI. Int J Med Inform 128:53–61. https://doi.org/10.1016/j.ijmedinf.2019.05.002 es_ES
dc.description.references Menze BH, Jakab A, Bauer S et al (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024. https://doi.org/10.1109/TMI.2014.2377694 es_ES
dc.description.references Bakas S, Akbari H, Sotiras A et al (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117. https://doi.org/10.1038/sdata.2017.117 es_ES
dc.description.references Bakas S, Reyes M, Jakab A, et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. ArXiv181102629 es_ES
dc.description.references Juan-Albarracín J, Fuster-Garcia E, del Mar Álvarez-Torres M et al (2020) ONCOhabitats glioma segmentation model. In: Crimi A, Bakas S (eds) Brain lesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer International Publishing, Cham, pp 295–303 es_ES
dc.description.references Knutsson L, Ståhlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 23:1–21. https://doi.org/10.1007/s10334-009-0190-2 es_ES
dc.description.references Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867 es_ES
dc.description.references Little RJA, Rubin DB (2002) Statistical analysis with missing data. John Wiley & Sons, New York [etc.] es_ES
dc.description.references Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 es_ES
dc.description.references R Core Team (v3.6.0) R: a language and environment for statistical computing es_ES
dc.description.references Hempel J-M, Schittenhelm J, Klose U et al (2018) In vivo molecular profiling of human glioma. Clin Neuroradiol. https://doi.org/10.1007/s00062-018-0676-2 es_ES
dc.description.references Chahal M, Xu Y, Lesniak D et al (2010) MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro Oncol 12:822–833. https://doi.org/10.1093/neuonc/noq017 es_ES
dc.description.references Moon W-J, Choi JW, Roh HG, Lim SD, Koh YC (2012) Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555–563. https://doi.org/10.1007/s00234-011-0947-y es_ES
dc.description.references Li Q, Guo J, Wang W, Wang D (2017) Relationship between MGMT gene expression and treatment effectiveness and prognosis in glioma. Oncol Lett 14:229–233. https://doi.org/10.3892/ol.2017.6123 es_ES
dc.description.references Nguyen HN, Lie A, Li T et al (2017) Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1 wild-type primary glioblastoma treated by standard chemoradiotherapy. Neuro Oncol 19:394–404. https://doi.org/10.1093/neuonc/now189 es_ES
dc.description.references Li S, Jiang T, Li G, Wang Z (2008) Impact of p53 status to response of temozolomide in low MGMT expression glioblastomas: preliminary results. Neurol Res 30:567–570. https://doi.org/10.1179/174313208X297913 es_ES
dc.description.references Molenaar RJ, Verbaan D, Lamba S et al (2014) The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 16:1263–1273. https://doi.org/10.1093/neuonc/nou005 es_ES
dc.description.references Li Z-C, Bai H, Sun Q et al (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650. https://doi.org/10.1007/s00330-017-5302-1 es_ES
dc.description.references Jiang S, Rui Q, Wang Y et al (2018) Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics. Eur Radiol 28:2115–2123. https://doi.org/10.1007/s00330-017-5182-4 es_ES
dc.description.references Emblem KE, Mouridsen K, Bjornerud A et al (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19:1178–1183. https://doi.org/10.1038/nm.3289 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem