- -

Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morales, Sandra es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Mossi García, José Manuel es_ES
dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author Woldbye, David es_ES
dc.contributor.author Klemp, Kristian es_ES
dc.contributor.author Larsen, Michael es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-07-08T18:05:08Z
dc.date.available 2022-07-08T18:05:08Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183990
dc.description.abstract [EN] Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 +/- 2.59 and 1.90 +/- 0.91 mu m is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 +/- 1.25 mu m is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Conclusions: Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images. es_ES
dc.description.sponsorship Animal experiment permission was granted by the Danish Animal Experimentation Council (license number: 2017-15-020101213). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This work has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant agreement No. 732613 (GALAHAD Project), the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869 and GVA through project PROMETEO/2019/109. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Optical coherence tomography es_ES
dc.subject Rodent OCT es_ES
dc.subject Rat OCT es_ES
dc.subject Layer segmentation es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Intensity profile es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2020.105788 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732613/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Animal Experimentation Council, Dinamarca//2017-15-0201-01213/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DPI2016-77869-C2-1-R//SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Morales, S.; Colomer, A.; Mossi García, JM.; Del Amor, R.; Woldbye, D.; Klemp, K.; Larsen, M.... (2021). Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks. Computer Methods and Programs in Biomedicine. 198:1-14. https://doi.org/10.1016/j.cmpb.2020.105788 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2020.105788 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 198 es_ES
dc.identifier.pmid 33130492 es_ES
dc.relation.pasarela S\419867 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Animal Experimentation Council, Dinamarca es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem