Mostrar el registro sencillo del ítem
dc.contributor.author | Morales, Sandra | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Mossi García, José Manuel | es_ES |
dc.contributor.author | del Amor, Rocío | es_ES |
dc.contributor.author | Woldbye, David | es_ES |
dc.contributor.author | Klemp, Kristian | es_ES |
dc.contributor.author | Larsen, Michael | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2022-07-08T18:05:08Z | |
dc.date.available | 2022-07-08T18:05:08Z | |
dc.date.issued | 2021-01 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183990 | |
dc.description.abstract | [EN] Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 +/- 2.59 and 1.90 +/- 0.91 mu m is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 +/- 1.25 mu m is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Conclusions: Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images. | es_ES |
dc.description.sponsorship | Animal experiment permission was granted by the Danish Animal Experimentation Council (license number: 2017-15-020101213). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This work has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant agreement No. 732613 (GALAHAD Project), the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869 and GVA through project PROMETEO/2019/109. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Optical coherence tomography | es_ES |
dc.subject | Rodent OCT | es_ES |
dc.subject | Rat OCT | es_ES |
dc.subject | Layer segmentation | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Intensity profile | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2020.105788 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/732613/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Animal Experimentation Council, Dinamarca//2017-15-0201-01213/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//DPI2016-77869-C2-1-R//SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Morales, S.; Colomer, A.; Mossi García, JM.; Del Amor, R.; Woldbye, D.; Klemp, K.; Larsen, M.... (2021). Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks. Computer Methods and Programs in Biomedicine. 198:1-14. https://doi.org/10.1016/j.cmpb.2020.105788 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2020.105788 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 198 | es_ES |
dc.identifier.pmid | 33130492 | es_ES |
dc.relation.pasarela | S\419867 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | Animal Experimentation Council, Dinamarca | es_ES |