- -

Revisiting Ciric type nonunique fixed point theorems via interpolation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Revisiting Ciric type nonunique fixed point theorems via interpolation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Karapinar, Erdal es_ES
dc.date.accessioned 2022-07-14T09:37:08Z
dc.date.available 2022-07-14T09:37:08Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/184152
dc.description.abstract [EN] In this paper, we aim to revisit some non-unique fixed point theorems that were initiated by Ciric, first. We consider also some natural consequences of the obtained results. In addition, we provide a simple example to illustrate the validity of the main result. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Abstract metric space es_ES
dc.subject Self-mappings es_ES
dc.subject Non-unique fixed point es_ES
dc.title Revisiting Ciric type nonunique fixed point theorems via interpolation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.16562
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Karapinar, E. (2021). Revisiting Ciric type nonunique fixed point theorems via interpolation. Applied General Topology. 22(2):483-496. https://doi.org/10.4995/agt.2021.16562 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.16562 es_ES
dc.description.upvformatpinicio 483 es_ES
dc.description.upvformatpfin 496 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16562 es_ES
dc.description.references J. Achari, On Ćirić's non-unique fixed points, Mat. Vesnik 13 (28), no. 3 (1976), 255-257. es_ES
dc.description.references H. Afshari, H. Aydi and E. Karapinar, On generalized α-ψ-Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), 9-21. https://doi.org/10.1515/gmj-2017-0063 es_ES
dc.description.references H. Afshari, H. Aydi and E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Mathematical Journal 32, no. 3 (2016), 319-332. https://doi.org/10.7858/eamj.2016.024 es_ES
dc.description.references R. P. Agarwal and E. Karapinar, Interpolative Rus-Reich-Ciric type contractions via simulation functions, An. St. Univ. Ovidius Constanta, Ser. Mat. 27, no. 3 (2019), 137-152. https://doi.org/10.2478/auom-2019-0038 es_ES
dc.description.references U. Aksoy, E. Karapinar and I. M. Erhan, Fixed points of generalized alpha-admissible contractions on b-metric spaces with an application to boundary value problems, Journal of Nonlinear and Convex Analysis 17, no. 6 (2016), 1095-1108. es_ES
dc.description.references H. Alsulami, S. Gulyaz, E. Karapinar and I. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Mathematics 14, no. 1 (2016), 1087-1103. https://doi.org/10.1515/math-2016-0097 es_ES
dc.description.references M. A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapinar, A note on extended Z-contraction, Mathematics 8, no. 2 (2020), 195. https://doi.org/10.3390/math8020195 es_ES
dc.description.references H. Aydi, C.-M. Chen and E. Karapinar, Interpolative Ciric-Reich-Rus type contractions via the Branciari distance, Mathematics 7, no. 1 (2019), 84. https://doi.org/10.3390/math7010084 es_ES
dc.description.references H. Aydi, E. Karapinar and A. F. Roldán López de Hierro, ω-Interpolative Ćirić-Reich-Rus-type contractions, Mathematics 7 (2019), 57. https://doi.org/10.3390/math7010057 es_ES
dc.description.references H. Aydi, M. F. Bota, E. Karapinar and S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory 13, no. 2 (2012), 337-346. https://doi.org/10.1186/1687-1812-2012-44 es_ES
dc.description.references H. Aydi, E. Karapinar, M. F. Bota and S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012:88. https://doi.org/10.1186/1687-1812-2012-88 es_ES
dc.description.references V. Berinde, Contracţii Generalizate şi Aplicaţii , Vol. 2, Editura Cub Press, Baie Mare, Romania, 1997. es_ES
dc.description.references V. Berinde, Sequences of operators and fixed points in quasimetric spaces, Mathematica 41, no. 4 (1996), 23-27. es_ES
dc.description.references V. Berinde, Generalized contractions in quasi-metric spaces, Seminar on Fixed Point Theory, Babeş-Bolyai University, Research Sem., (1993), 3-9. es_ES
dc.description.references C. Chifu, E. Karapinar and G. Petrusel, Fixed point results in ε-chainable complete b-metric spaces, Fixed Point Theory 21, no. 2 (2020), 453-464. https://doi.org/10.24193/fpt-ro.2020.2.32 es_ES
dc.description.references L. B. Ćirić, On some maps with a nonunique fixed point, Publ. Inst. Math. 17 (1974), 52-58. es_ES
dc.description.references S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. et Inf. Uni. Ostraviensis 1 (1993), 5-11. es_ES
dc.description.references A. Fulga, E. Karapinar and G. Petrusel, On hybrid contractions in the context of quasi-metric spaces, Mathematics 8 (2020), 675. https://doi.org/10.3390/math8050675 es_ES
dc.description.references Y. U. Gaba and E. Karapinar, A new approach to the interpolative contractions, Axioms 2019, 8, 110. https://doi.org/10.3390/axioms8040110 es_ES
dc.description.references S. Gulyaz-Ozyurt, On some alpha-admissible contraction mappings on Branciari b-metric spaces, Advances in the Theory of Nonlinear Analysis and its Applications 1 (2017), 1-13. https://doi.org/10.31197/atnaa.318445 es_ES
dc.description.references S. Gupta and B. Ram, Non-unique fixed point theorems of Ćirić type, (Hindi) Vijnana Parishad Anusandhan Patrika 41, no. 4 (1998), 217-231. es_ES
dc.description.references R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76. https://doi.org/10.2307/2316437 es_ES
dc.description.references E. Karapinar, A new non-unique fixed point theorem, J. Appl. Funct. Anal. 7, no. 1-2 (2012), 92-97. https://doi.org/10.1186/1687-1812-2012-194 es_ES
dc.description.references E. Karapinar, Some nonunique fixed point theorems of Ćirić type on cone metric spaces, Abstr. Appl. Anal. 2010 (2010), Article ID 123094. https://doi.org/10.1155/2010/123094 es_ES
dc.description.references E. Karapinar, Ciric type nonunique fixed points results: a review, Applied and Computational Mathematics an International Journal 1 (2019), 3-21. es_ES
dc.description.references E. Karapinar, O. Alqahtani and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11, no. 1 (2019), 8. https://doi.org/10.3390/sym11010008 es_ES
dc.description.references E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135 es_ES
dc.description.references E. Karapinar, H. Aydi and Z. D. Mitrovic, On interpolative Boyd-Wong and Matkowski type contractions, TWMS J. Pure Appl. Math. 11, no. 2 (2020), 204-212. es_ES
dc.description.references E. Karapinar, R. Agarwal and H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics 6, no. 11 (2018), 256. https://doi.org/10.3390/math6110256 es_ES
dc.description.references E. Karapinar, A. Fulga and A. Petrusel, On Istratescu type contractions in $b$-metric spaces, Mathematics 8, no. 3 (2020), 388. https://doi.org/10.3390/math8030388 es_ES
dc.description.references E. Karapinar, A short survey on the recent fixed point results on $b$-metric spaces, Constructive Mathematical Analysis 1, no. 1 (2018), 15-44. https://doi.org/10.33205/cma.453034 es_ES
dc.description.references E. Karapinar and C. Chifu, Results in wt-distance over $b$-metric spaces, Mathematics 8, no. 2 (2020), 220. https://doi.org/10.3390/math8020220 es_ES
dc.description.references E. Karapinar and A. Fulga, Fixed point on convex $b$-metric space via admissible mappings, TWMS JPAM 12, no. 2 (2021). https://doi.org/10.1155/2021/5538833 es_ES
dc.description.references E. Karapinar, Interpolative Kannan-Meir-Keeler type contraction, Adv. Theory Nonlinear Anal. 5, no. 4 (2021), 611-614. https://doi.org/10.31197/atnaa.989389 es_ES
dc.description.references Z. Liu, Z. Guo, S. M. Kang and S. K. Lee, On Ćirić type mappings with nonunique fixed and periodic points, Int. J. Pure Appl. Math. 26, no. 3 (2006), 399-408. es_ES
dc.description.references Z. Q. Liu, On Ćirić type mappings with a nonunique coincidence points, Mathematica (Cluj) 35(58), no. 2 (1993), 221-225. es_ES
dc.description.references B. G. Pachpatte, On Ćirić type maps with a nonunique fixed point, Indian J. Pure Appl. Math. 10, no. 8 (1979), 1039-1043. es_ES
dc.description.references I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem