- -

Global Optimization of Redescending Robust Estimators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Global Optimization of Redescending Robust Estimators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baselga Moreno, Sergio es_ES
dc.contributor.author Klein, Ivandro es_ES
dc.contributor.author Sampaio Suraci, Stefano es_ES
dc.contributor.author Castro de Oliveira, Leonardo es_ES
dc.contributor.author Tomio Matsuoka, Marcelo es_ES
dc.contributor.author Francisco Rofatto, Vinicius es_ES
dc.date.accessioned 2022-09-27T18:04:13Z
dc.date.available 2022-09-27T18:04:13Z
dc.date.issued 2021-07-24 es_ES
dc.identifier.issn 1024-123X es_ES
dc.identifier.uri http://hdl.handle.net/10251/186638
dc.description.abstract [EN] Robust estimation has proved to be a valuable alternative to the least squares estimator for the cases where the dataset is contaminated with outliers. Many robust estimators have been designed to be minimally affected by the outlying observations and produce a good fit for the majority of the data. Among them, the redescending estimators have demonstrated the best estimation capabilities. It is little known, however, that the success of a robust estimation method depends not only on the robust estimator used but also on the way the estimator is computed. In the present paper, we show that for complicated cases, the predominant method of computing the robust estimator by means of an iteratively reweighted least squares scheme may result in a local optimum of significantly lower quality than the global optimum attainable by means of a global optimization method. Further, the sequential use of the proposed global robust estimation proves to successfully solve the problem of M-split estimation, that is, the determination of parameters of different functional models implicit in the data. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Mathematical Problems in Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sparse Recoveryal es_ES
dc.subject Algorith es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Global Optimization of Redescending Robust Estimators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2021/9929892 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Baselga Moreno, S.; Klein, I.; Sampaio Suraci, S.; Castro De Oliveira, L.; Tomio Matsuoka, M.; Francisco Rofatto, V. (2021). Global Optimization of Redescending Robust Estimators. Mathematical Problems in Engineering. 2021:1-13. https://doi.org/10.1155/2021/9929892 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2021/9929892 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2021 es_ES
dc.relation.pasarela S\448253 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem