Mostrar el registro sencillo del ítem
dc.contributor.author | Zlatić, Martin | es_ES |
dc.contributor.author | Čanađija, Marko | es_ES |
dc.date.accessioned | 2022-09-29T06:48:44Z | |
dc.date.available | 2022-09-29T06:48:44Z | |
dc.date.issued | 2022-05-11 | |
dc.identifier.isbn | 9788490489697 | |
dc.identifier.uri | http://hdl.handle.net/10251/186686 | |
dc.description.abstract | [EN] With the recent surge in neural network usage, machine learning libraries have become more convenient to use and implement. In this paper we investigate the possibility of using neural networks in order to faster process displacements obtained from finite element calculation and replace existing post-processing procedures. The method is implemented on 2D finite elements for their relative ease of usage and manipulation. A speed up is observed in comparison to traditional methods of post-processing. Possible further applications of this method are also presented in this paper. | es_ES |
dc.description.sponsorship | This work has been fully supported by Croatian Science Foundation under the project IP2019-04-4703. | es_ES |
dc.format.extent | 6 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Postprocessing | es_ES |
dc.subject | Finite element method | es_ES |
dc.title | Reducing computational time for FEM postprocessing through the use of feedforward neural networks | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/YIC2021.2021.12473 | |
dc.relation.projectID | info:eu-repo/grantAgreement/HRZZ//IP2019-04-4703 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Zlatić, M.; Čanađija, M. (2022). Reducing computational time for FEM postprocessing through the use of feedforward neural networks. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 397-402. https://doi.org/10.4995/YIC2021.2021.12473 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | VI ECCOMAS Young Investigators Conference | es_ES |
dc.relation.conferencedate | Julio 07-09, 2021 | es_ES |
dc.relation.conferenceplace | Valencia, España | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/YIC/YIC2021/paper/view/12473 | es_ES |
dc.description.upvformatpinicio | 397 | es_ES |
dc.description.upvformatpfin | 402 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\12473 | es_ES |
dc.contributor.funder | Croatian Science Foundation | es_ES |