- -

Fixed point theorems for F- contraction mapping in complete rectangular M-metric space

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point theorems for F- contraction mapping in complete rectangular M-metric space

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Asim, Mohammad es_ES
dc.contributor.author Mujahid, Samad es_ES
dc.contributor.author Uddin, Izhar es_ES
dc.date.accessioned 2022-10-06T09:44:58Z
dc.date.available 2022-10-06T09:44:58Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187137
dc.description.abstract [EN] In this paper, we prove a fixed point result for F- contraction principle in the framework of rectangular M-metric space. An example is also adopted to exhibit the utility of our result. Finally, we apply our fixed point result to show the existence of solution of Fredholm integral equation. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject F-contraction es_ES
dc.subject Rectangular M-metric space es_ES
dc.subject Integral equation es_ES
dc.title Fixed point theorems for F- contraction mapping in complete rectangular M-metric space es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.17418
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Asim, M.; Mujahid, S.; Uddin, I. (2022). Fixed point theorems for F- contraction mapping in complete rectangular M-metric space. Applied General Topology. 23(2):363-376. https://doi.org/10.4995/agt.2022.17418 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.17418 es_ES
dc.description.upvformatpinicio 363 es_ES
dc.description.upvformatpfin 376 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17418 es_ES
dc.description.references M. Asadi, Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications, Fixed Point Theory Appl. 2015 (2015), 210. https://doi.org/10.1186/s13663-015-0460-9 es_ES
dc.description.references M. Asadi, On Ekeland's variational principle in M-metric spaces, Journal of Nonlinear and Convex Anal. 17 (2016), 1151-1158. es_ES
dc.description.references M. Asadi, M. Azhini, E. Karapinar and H. Monfared, Simulation functions over M-metric spaces, East Asian Math. J. 33 (2017), 559-570. es_ES
dc.description.references M. Asadi, E. Karapinar and P. Salimi, New extension of p-metric spaces with some fixed-points results on M-metric spaces, J. Inequal. Appl. 18 (2014), 1-9. https://doi.org/10.1186/1029-242X-2014-18 es_ES
dc.description.references M. Asim, A. R. Khan and M. Imdad, Rectangular $M_{b}$-metric spaces and fixed point results, J. Math. Anal. 10 (2019), 10-18. https://doi.org/10.1186/s13660-019-2223-3 es_ES
dc.description.references M. Asim, S. Mujahid and I. Uddin, Meir-Keeler contraction in rectangular M-metric space, Topol. Algebra Appl. 9 (2021), 96-104. https://doi.org/10.1515/taa-2021-0106 es_ES
dc.description.references M. Asim, K.S. Nisar, A. Morsy and M. Imdad, Extended rectangular $M_{rxi}$-metric spaces and fixed point results, Mathematics 7 (2019), 1136. https://doi.org/10.3390/math7121136 es_ES
dc.description.references M. Asim, I. Uddin and M. Imdad, Fixed point results in $M_{nu}$-metric spaces with an application, J. Inequal. Appl. 2019 (2019), 1-19. https://doi.org/10.1186/s13660-019-2223-3 es_ES
dc.description.references M. Aslantas, H. Sahin and D. Turkoglu, Some Caristi type fixed point theorems, TheJournal of Analysis 29 (2020), 89-103 es_ES
dc.description.references https://doi.org/10.1007/s41478-020-00248-8 es_ES
dc.description.references S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math. 3 (1922), 131-181. https://doi.org/10.4064/fm-3-1-133-181 es_ES
dc.description.references D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. https://doi.org/10.1090/S0002-9939-1969-0239559-9 es_ES
dc.description.references A. Branciari, A fixed point theorem of Banach-Cacciopoli type on a class of generalized metric spaces, Publ. Math. 57 (2000), 31-37. es_ES
dc.description.references S. K. Chatterjee, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730. es_ES
dc.description.references Lj. B. Ćirić, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (1971), 19-26. es_ES
dc.description.references Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 es_ES
dc.description.references Z. Kadelburg and S. Radenović, Notes on some recent papers concerning F-contractions in b-metric spaces, Constr. Math. Anal. 1 (2018), 108-112. https://doi.org/10.33205/cma.468813 es_ES
dc.description.references R. Kannan, Some results on fixed points, Bull. Cal. Math. 60 (1968), 71-76. https://doi.org/10.2307/2316437 es_ES
dc.description.references S. Luambano, S. Kumar and G. Kakiko, Fixed point theorem for F-contraction mappings in partial metric spaces, Lobachevskii J. Math. 40 (2019), 183-188. https://doi.org/10.1134/S1995080219020094 es_ES
dc.description.references S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. 728 (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x es_ES
dc.description.references A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6 es_ES
dc.description.references G. Minak, A. Helvaci and I. Altun, Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat 28 (2014), 1143-1151. https://doi.org/10.2298/FIL1406143M es_ES
dc.description.references H. Monfared, M. Asadi, M. Azhini and D. O'Regan, F(ψ,ϕ)-contractions for α-admissible mappings on m-metric spaces, Fixed Point Theory and Appl. 2018 (2018), 22. https://doi.org/10.30697/rfpta-2018-004 es_ES
dc.description.references H. Monfared, M. Azhini and M. Asadi, C-class and F(ψ,ϕ)-contractions on M-metric spaces, Int. J. Nonlinear Anal. Appl. 8 (2017), 209-224. es_ES
dc.description.references H. Monfared, M. Azhini and M. Asadi, A generalized contraction principle with control function on M-metric spaces, Nonlinear Functional Analysis and Appl. 22 (2017), 395-402. es_ES
dc.description.references W. Onsod, P. Kumam and Y. J. Cho, Fixed points of α-θ-Geraghty type and θ-Geraghty graphic type contractions, Appl. Gen. Topol. 18 (2017), 153-171. https://doi.org/10.4995/agt.2017.6694 es_ES
dc.description.references N. Y. Özgür, N. Mlaiki, N. Taş and N. Souayah, A generalization of metrics spaces: rectangular M- metric spaces, Math. Sci. 12 (2018), 223-233. https://doi.org/10.1007/s40096-018-0262-4 es_ES
dc.description.references H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210. https://doi.org/10.1186/1687-1812-2014-210 es_ES
dc.description.references H. Piri, S. Rahrovi, H. Marasi and P. Kumam, F-contraction on asymmetric metric spaces, J. Math. Comput. Sci. 17 (2017), 32-40. https://doi.org/10.22436/jmcs.017.01.03 es_ES
dc.description.references S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9 es_ES
dc.description.references H. Sahin, A new type of F-contraction and their best proximity point results with homotopy application, Acta Applicandae Mathematicae 179 (2022), 1-15. https://doi.org/10.1007/s10440-022-00496-9 es_ES
dc.description.references H. Sahin, I. Altun and D. Turkoglu, Two fixed point results for multivalued F-contractions on M-metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 1839-1849. https://doi.org/10.1007/s13398-018-0585-x es_ES
dc.description.references S. Shukla, Partial rectangular metric spaces and fixed point theorems, Sci. World J. 2014 (2014). https://doi.org/10.1186/1687-1812-2014-127 es_ES
dc.description.references T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), 440-458. https://doi.org/10.1006/jmaa.2000.7151 es_ES
dc.description.references D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 1-6. https://doi.org/10.1186/1687-1812-2012-94 es_ES
dc.description.references T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math. 23 (1972), 292-298. https://doi.org/10.1007/BF01304884 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem