- -

Best proximity point (pair) results via MNC in Busemann convex metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Best proximity point (pair) results via MNC in Busemann convex metric spaces

Mostrar el registro completo del ítem

Gabeleh, M.; Patle, PR. (2022). Best proximity point (pair) results via MNC in Busemann convex metric spaces. Applied General Topology. 23(2):405-424. https://doi.org/10.4995/agt.2022.14000

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187140

Ficheros en el ítem

Metadatos del ítem

Título: Best proximity point (pair) results via MNC in Busemann convex metric spaces
Autor: Gabeleh, Moosa Patle, Pradip Ramesh
Fecha difusión:
Resumen:
[EN] In this paper, we present a new class of cyclic (noncyclic) α-ψ and β-ψ condensing operators and survey the existence of best proximity points (pairs) as well as coupled best proximity points (pairs) in the setting ...[+]
Palabras clave: Coupled best proximity point (pair) , Cyclic (noncyclic) condensing operator , Optimum solution , Busemann convex space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.14000
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.14000
Tipo: Artículo

References

R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, vol. 55, Birkhäuser, Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7

M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of noncompactness in metric fixed point theory, Operator Theory: Advances and Applications, vol. 99, Birkhäuser, Basel (1997). https://doi.org/10.1007/978-3-0348-8920-9

G. C. Ahuja, T. D. Narang and S. Trehan, Best approximation on convex sets in a metric space, J. Approx. Theory 12 (1974), 94-97. https://doi.org/10.1016/0021-9045(74)90062-8 [+]
R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, vol. 55, Birkhäuser, Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7

M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of noncompactness in metric fixed point theory, Operator Theory: Advances and Applications, vol. 99, Birkhäuser, Basel (1997). https://doi.org/10.1007/978-3-0348-8920-9

G. C. Ahuja, T. D. Narang and S. Trehan, Best approximation on convex sets in a metric space, J. Approx. Theory 12 (1974), 94-97. https://doi.org/10.1016/0021-9045(74)90062-8

A. Berdellima, Complete sets and closure of their convex hulls in CAT(0) spaces, arXiv:2109.06002v1.

M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin Heidelberg, 1999. https://doi.org/10.1007/978-3-662-12494-9

H. Busemann, Geometry of geodesics, Academic Press, (1955) New York.

A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171 (2005), 283-293. https://doi.org/10.4064/sm171-3-5

R. Espínola and A. Nicolae, Mutually nearest and farthest points of sets and the drop theorem in geodesic spaces, Monatsh. Math. 165 (2012), 173-197. https://doi.org/10.1007/s00605-010-0266-0

R. Espínola and B. Piatek, Fixed point property and unbounded sets in CAT(0) spaces, J. Math. Anal. Appl. 408 (2013), 638-654. https://doi.org/10.1016/j.jmaa.2013.06.038

R. Espínola, O. Madiedo and A. Nicolae, Borsuk-Dugundji type extensions theorems with Busemann convex target spaces, Annales Academiae Scientiarum Fennicae Mathematica 43 (2018), 225-238. https://doi.org/10.5186/aasfm.2018.4313

A. Fernández León and A. Nicolae, Best proximity pair results relatively nonexpansive mappings in geodesic spaces, Numer. Funct. Anal. Optim. 35 (2014), 1399-1418. https://doi.org/10.1080/01630563.2014.895762

M. Gabeleh and J. Markin, Optimum solutions for a system of differential equations via measure of noncompactness, Indagationes Mathematicae 29 (2018), 895-906. https://doi.org/10.1016/j.indag.2018.01.008

M. Gabeleh and H. P. Künzi, Condensing operators of integral type in Busemann reflexive convex spaces, Bull. Malays. Math. Sci. Soc. 43 (2020), 1971-1988. https://doi.org/10.1007/s40840-019-00785-x

M. Gabeleh and H. P. Künzi, Mappings of generalized condensing type in metric spaces with Busemann convex structure, Bull. Iran. Math. Soc. 46 (2020), 1465-1483. https://doi.org/10.1007/s41980-019-00336-x

M. Gabeleh, Best proximity points for cyclic mappings, Ph.D Thesis (in Persian) (2012).

M. Gabeleh and J. Markin, Global optimal solutions of a system of differential equations via measure of noncompactness, Filomat 35 (2021), 5059-5071. https://doi.org/10.2298/FIL2115059G

A. Latif, N. Saleem and M. Abbas, α-optimal best proximity point result involving proximal contraction mappings in fuzzy metric spaces, J. Nonlin. Sci. Appl. 10 (2017), 92-103. https://doi.org/10.22436/jnsa.010.01.09

P. R. Patle, D. K. Patel and R. Arab, Darbo type best proximity point results via simulation function with application, Afrika Mathematika 31 (2020), 833-845. https://doi.org/10.1007/s13370-020-00764-7

H. Rehman, D. Gopal and P. Kumam, Generalizations of Darbo's fixed point theorem for a new condensing operators with application to a functional integral equation, Demonstr. Mat. 52 (2019), 166-182. https://doi.org/10.1515/dema-2019-0012

N. Saleem, H. Ahmad, H. Aydi and Y. U. Gaba, On some coincidence best proximity point results, J. Math. 2021 (2021), 1-19. https://doi.org/10.1155/2021/8005469

N. Saleem, M. Abbas, B. Bin-Mohsin and S. Radenovic, Pata type best proximity point results in metric spaces, Miskolc Math. Notes 21 (2020), 367-386. https://doi.org/10.18514/MMN.2020.2764

N. Saleem, M. Abbas and K. Sohail, Approximate fixed point results for (α-η)-type and (β-ψ)-type fuzzy contractive mappings in b-fuzzy metric spaces, Malaysian J. Math. Sci. 15 (2019), 367-386.

B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 19 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem