Mostrar el registro sencillo del ítem
dc.contributor.author | Ali Akbar, Kamaludheen | es_ES |
dc.contributor.author | Mubeena, T. | es_ES |
dc.date.accessioned | 2022-10-06T10:13:23Z | |
dc.date.available | 2022-10-06T10:13:23Z | |
dc.date.issued | 2022-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/187148 | |
dc.description.abstract | [EN] In this article, we prove that the group of all increasing homeomorphisms on R has exactly five normal subgroups, and the group of all homeomorphisms on R has exactly four normal subgroups. There are several results known about the group of homeomorphisms on R and about the group of increasing homeomorphisms on R ([2], [6], [7] and [8]), but beyond this there is virtually nothing in the literature concerning the topological structure in the aspects of topological dynamics. In this paper, we analyze this structure in some detail. | es_ES |
dc.description.sponsorship | The first author acknowledges SERB-MATRICS Grant No. MTR/2018/000256 for financial support. The second author acknowledges University of Calicut, Seed Money (U.O. No. 11733/2021/Admn; Dated: 11.10.2021), INDIA for financial support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Group of homeomorphisms | es_ES |
dc.subject | Normal subgroups | es_ES |
dc.subject | Dynamical systems | es_ES |
dc.subject | Fixed points | es_ES |
dc.subject | Conjugacy | es_ES |
dc.subject | Bounded functions | es_ES |
dc.title | On the group of homeomorphisms on R: A revisit | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.16143 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UOC//11733%2F2021 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SERB/MTR%2F2018%2F000256 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ali Akbar, K.; Mubeena, T. (2022). On the group of homeomorphisms on R: A revisit. Applied General Topology. 23(2):269-280. https://doi.org/10.4995/agt.2022.16143 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.16143 | es_ES |
dc.description.upvformatpinicio | 269 | es_ES |
dc.description.upvformatpfin | 280 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\16143 | es_ES |
dc.contributor.funder | University of Calicut | es_ES |
dc.contributor.funder | Science and Engineering Research Board, India | es_ES |
dc.description.references | R. Arens, Topologies for Homeomorphism Groups, American Journal of Mathematics 68 (1946), 593-610. https://doi.org/10.2307/2371787 | es_ES |
dc.description.references | N. J. Fine and G. E. Schweigert, On the group of homeomorphisms of an arc, Annals of Mathematics 62 (1955), 237-253. https://doi.org/10.2307/1969678 | es_ES |
dc.description.references | M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511755316 | es_ES |
dc.description.references | R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, second edition, 1989. | es_ES |
dc.description.references | I. N. Herstein, Topics in Algebra, John Wiley and Sons, 2nd Revised edition, 1975. | es_ES |
dc.description.references | A. G. O'Farrell, Conjugacy, involutions, and reversibility for real homeomorphisms, Irish Math. Soc. Bulletin 54 (2004), 41-52. https://doi.org/10.33232/BIMS.0054.41.52 | es_ES |
dc.description.references | S. Ulam and J. von Neumann, On the group of homeomorphisms of the surface of the sphere, (abstract), Bull. Amer. Math. Soc. 53 (1947), 506. | es_ES |
dc.description.references | J. V. Whittaker, Normal subgroups of some homeomorphism groups, Pacific J. Math. 10, no. 4 (1960), 1469-1478. https://doi.org/10.2140/pjm.1960.10.1469 | es_ES |