Andersen, TB.; Llorente, B.; Morelli, L.; Torres-Montilla, S.; Bordanaba-Florit, G.; Espinosa, FA.; Rodriguez-Goberna, MR.... (2021). An engineered extraplastidial pathway for carotenoid biofortification of leaves. Plant Biotechnology Journal. 19(5):1008-1021. https://doi.org/10.1111/pbi.13526
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187400
Título:
|
An engineered extraplastidial pathway for carotenoid biofortification of leaves
|
Autor:
|
Andersen, Trine B.
Llorente, Briardo
Morelli, Luca
Torres-Montilla, Salvador
Bordanaba-Florit, Guillermo
Espinosa, Fausto A.
Rodriguez-Goberna, Maria Rosa
Campos, Narciso
Olmedilla-Alonso, Begoña
Llansola-Portoles, Manuel J.
Pascal, Andrew A.
Rodriguez-Concepcion, Manuel
|
Entidad UPV:
|
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
|
Fecha difusión:
|
|
Resumen:
|
[EN] Carotenoids are lipophilic plastidial isoprenoids highly valued as nutrients and natural pigments. A correct balance of chlorophylls and carotenoids is required for photosynthesis and therefore highly regulated, making ...[+]
[EN] Carotenoids are lipophilic plastidial isoprenoids highly valued as nutrients and natural pigments. A correct balance of chlorophylls and carotenoids is required for photosynthesis and therefore highly regulated, making carotenoid enrichment of green tissues challenging. Here we show that leaf carotenoid levels can be boosted through engineering their biosynthesis outside the chloroplast. Transient expression experiments in Nicotiana benthamiana leaves indicated that high extraplastidial production of carotenoids requires an enhanced supply of their isoprenoid precursors in the cytosol, which was achieved using a deregulated form of the main rate-determining enzyme of the mevalonic acid (MVA) pathway. Constructs encoding bacterial enzymes were used to convert these MVA-derived precursors into carotenoid biosynthetic intermediates that do not normally accumulate in leaves, such as phytoene and lycopene. Cytosolic versions of these enzymes produced extraplastidial carotenoids at levels similar to those of total endogenous (i.e. chloroplast) carotenoids. Strategies to enhance the development of endomembrane structures and lipid bodies as potential extraplastidial carotenoid storage systems were not successful to further increase carotenoid contents. Phytoene was found to be more bioaccessible when accumulated outside plastids, whereas lycopene formed cytosolic crystalloids very similar to those found in the chromoplasts of ripe tomatoes. This extraplastidial production of phytoene and lycopene led to an increased antioxidant capacity of leaves. Finally, we demonstrate that our system can be adapted for the biofortification of leafy vegetables such as lettuce
[-]
|
Palabras clave:
|
Carotenoids
,
Phytoene
,
Lycopene
,
Biosynthesis
,
Nicotiana benthamiana
,
Lettuce
,
Bioaccessibility
,
Antioxidant
,
Biofortification
|
Derechos de uso:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Fuente:
|
Plant Biotechnology Journal. (issn:
1467-7644
)
|
DOI:
|
10.1111/pbi.13526
|
Editorial:
|
Blackwell Publishing
|
Versión del editor:
|
https://doi.org/10.1111/pbi.13526
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-84041-P/ES/NUEVAS HERRAMIENTAS BIOTECNOLOGICAS PARA MEJORAR LA PRODUCCION Y EL ALMACENAJE DE VITAMINAS A Y E EN CELULAS VEGETALES/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-84041-P/ES/NUEVAS HERRAMIENTAS BIOTECNOLOGICAS PARA MEJORAR LA PRODUCCION Y EL ALMACENAJE DE VITAMINAS A Y E EN CELULAS VEGETALES/
info:eu-repo/grantAgreement/GC//2017SGR-710/
info:eu-repo/grantAgreement/EC/H2020/713673/EU
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FIN18%2F11660004/
info:eu-repo/grantAgreement/MECD//FPU16%2F04054/ES/FPU16%2F04054/
info:eu-repo/grantAgreement/AEI//BIO2017-90877-REDT/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0533/ES/AGR-CONSORCI CSIC-IRTA-UAB CENTRE DE RECERCA EN AGRIGENOMICA (CRAG)/
info:eu-repo/grantAgreement/FRISBI//ANR-10-INBS-05/
info:eu-repo/grantAgreement/COST//CA15136//EUROCAROTEN/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//100010434/
[-]
|
Agradecimientos:
|
We greatly thank Juan Jose Lopez-Moya, Maria Luisa Domingo-Calap, George Lomonossoff, Maria Coca and Tarik Ruiz for the gift of plasmids, and Christophe Humbert for his help measuring diffuse absorption spectra. This work ...[+]
We greatly thank Juan Jose Lopez-Moya, Maria Luisa Domingo-Calap, George Lomonossoff, Maria Coca and Tarik Ruiz for the gift of plasmids, and Christophe Humbert for his help measuring diffuse absorption spectra. This work was funded by the European Regional Development Fund (FEDER) and the Spanish Agencia Estatal de Investigacion (grants BIO2017-84041-P and, BIO2017-90877-REDT), Generalitat de Catalunya (2017SGR-710), and European Union's Horizon 2020 (EU-H2020) COST Action CA15136 (EuroCaroten) to MRC. We also acknowledge the financial support of the Severo Ochoa Programme for Centres of Excellence in R&D 2016-2019 (SEV-2015-0533) and the Generalitat de Catalunya CERCA Programme to CRAG. This work also benefited from the Biophysics Platform of I2BC, supported by iBiSA and by the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05. TBA was funded by a Carlsberg Foundation fellowship. BL is supported by grants from the CSIRO Synthetic Biology Future Science Platform and Macquarie University. LM is supported by La Caixa Foundation PhD INPhINIT (ID 100010434) fellowship LCF/BQ/IN18/11660004, which received funding from the EU-H2020 (MSCA grant 713673). STM is supported by a PhD fellowship from the Spanish Ministry of Education, Culture and Sports (FPU16/04054).
[-]
|
Tipo:
|
Artículo
|