- -

Sets of periods for chaotic linear operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sets of periods for chaotic linear operators

Mostrar el registro completo del ítem

Conejero, JA.; Martínez Jiménez, F.; Peris Manguillot, A.; Ródenas Escribá, FDA. (2021). Sets of periods for chaotic linear operators. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(2):1-7. https://doi.org/10.1007/s13398-020-00996-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187687

Ficheros en el ítem

Metadatos del ítem

Título: Sets of periods for chaotic linear operators
Autor: Conejero, J. Alberto Martínez Jiménez, Félix Peris Manguillot, Alfredo Ródenas Escribá, Francisco De Asís
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We provide a complete characterization of the possible sets of periods for Devaney chaotic linear operators on Hilbert spaces. As a consequence, we also derive this characterization for linearizable maps on Banach spaces.[+]
Palabras clave: Chaotic operators , Hypercyclic operators , Periodic points
Derechos de uso: Reconocimiento (by)
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-020-00996-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-020-00996-z
Coste APC: 2750
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/AEI//MTM2016-75963-P//DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./
Agradecimientos:
This work was supported by MICINN and FEDER, Projects MTM2016-75963-P and PID2019-105011GB-I00. The second and third authors were also supported by Generalitat Valenciana, Project PROMETEO/2017/102. We would to that the ...[+]
Tipo: Artículo

References

Ali Akbar, K., Kannan, V., Gopal, S., Chiranjeevi, P.: The set of periods of periodic points of a linear operator. Linear Algebra Appl. 431(1–2), 241–246 (2009)

Alsedà, L., Llibre, J.: Periods for triangular maps. Bull. Austral. Math. Soc. 47(1), 41–53 (1993)

Alsedà, L., Juher, D., Mumbrú, P.: Periodic behavior on trees. Ergod. Theory Dynam. Syst. 25(5), 1373–1400 (2005) [+]
Ali Akbar, K., Kannan, V., Gopal, S., Chiranjeevi, P.: The set of periods of periodic points of a linear operator. Linear Algebra Appl. 431(1–2), 241–246 (2009)

Alsedà, L., Llibre, J.: Periods for triangular maps. Bull. Austral. Math. Soc. 47(1), 41–53 (1993)

Alsedà, L., Juher, D., Mumbrú, P.: Periodic behavior on trees. Ergod. Theory Dynam. Syst. 25(5), 1373–1400 (2005)

Alsedà, L., Ruette, S.: On the set of periods of sigma maps of degree 1. Discrete Continuous Dyn. Syst. 35(10), 4683–4734 (2015)

Alsedà, L., Ruette, S.: Periodic orbits of large diameter for circle maps. Proc. Am. Math. Soc. 138(9), 3211–3217 (2010)

Alsedà, L., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One, Advanced Series in Nonlinear Dynamics, vol. 5. World Scientific Publishing Co. Inc, River Edge (1993)

Baker, I.N.: Fixpoints of polynomials and rational functions. J. Lond. Math. Soc. 39, 615–622 (1964)

Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99, 332–334 (1992)

Bayart, F., Grivaux, S.: Hypercyclicity and unimodular point spectrum. J. Funct. Anal. 226(2), 281–300 (2005)

Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)

Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Distributional chaos for linear operators. J. Funct. Anal. 265, 2143–2163 (2013)

Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Li-Yorke chaos in linear dynamics. Ergod. Theory Dynam. Syst. 35, 1723–1745 (2015)

Bonet, J., Martínez-Giménez, F., Peris, A.: Linear chaos on Fréchet spaces. Int. J. Bifur. Chaos Appl. Sci. Eng. 13(7), 1649–1655 (2003)

Cabral Balreira, E., Elaydi, S., Luís, V.: Global dynamics of triangular maps. Nonlinear Anal. 104, 75–83 (2014)

Chiranjeevi, P., Kannan, V., Gopal, S.: Periodic points and periods for operators on Hilbert space. Discrete Continuous Dynam. Syst. 33(9), 4233–4237 (2013)

Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)

Gopal, S., Raja, C.: Periodic points of solenoidal automorphisms. Topol. Proc. 50, 49–57 (2017)

Gouveia, M.R., Llibre, J.: Periods of periodic homeomorphisms of pinched surfaces with one or two branching points. Houst. J. Math. 45(4), 1227–1243 (2019)

Grivaux, S., Matheron, E.: Invariant measures for frequently hypercyclic operators. Adv. Math. 265, 371–427 (2014)

Grivaux, S., Matheron, É., Menet, Q.: Linear dynamical systems on Hilbert spaces: typical properties and explicit examples, Mem. Am. Math. Soc. 269(1315), 143 (2021). arXiv:1703.01854v1

Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators. Bull. Am. Math. Soc. (N.S.) 36(3), 345–381 (1999)

Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)

Li, H.-C.: Periodic points of a linear transformation. Linear Algebra Appl. 437(10), 2489–2497 (2012)

Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B., Weber, A.: The set of periods of chaotic operators and semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105(2), 397–402 (2011)

Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B., Weber, A.: Periods of strongly continuous semigroups. Bull. Lond. Math. Soc. 44(3), 480–488 (2012)

Šarkovskiĭ, O. M.: Co-existence of cycles of a continuous mapping of the line into itself. Ukrain. Mat. Z̆. 16, 61–71 (1964)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem