- -

A Banach contraction principle in fuzzy metric spaces defined by means of t-conorms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Banach contraction principle in fuzzy metric spaces defined by means of t-conorms

Mostrar el registro completo del ítem

Gregori Gregori, V.; Miñana, J. (2021). A Banach contraction principle in fuzzy metric spaces defined by means of t-conorms. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(3):1-11. https://doi.org/10.1007/s13398-021-01068-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187700

Ficheros en el ítem

Metadatos del ítem

Título: A Banach contraction principle in fuzzy metric spaces defined by means of t-conorms
Autor: Gregori Gregori, Valentín Miñana, Juan-José
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. The difficulty of demonstrating a fixed point theorem in such kind of spaces makes the authors to demand extra conditions ...[+]
Palabras clave: Fuzzy metric space , Fuzzy contractive mapping , Archimedean continuous t-conorm , Fixed point , K-contraction
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-021-01068-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-021-01068-6
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095709-B-C21/ES/METRICAS DIFUSAS Y OPERADORES DE INDISTINGUIBILIDAD: APLICACIONES EN ROBOTICA/
info:eu-repo/grantAgreement/CAIB//PROCOE%2F4%2F2017/
info:eu-repo/grantAgreement/EC/H2020/779776/EU
info:eu-repo/grantAgreement/GVA//AICO-2020-136/
info:eu-repo/grantAgreement/EC/H2020/871260/EU
Agradecimientos:
Juan-José Miñana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/¿Proyecto PGC2018-095709-B-C21. This work is also partially supported by Programa ...[+]
Tipo: Artículo

References

Castro-Company, F., Romaguera, S., Tirado, P.: On the construction of metrics from fuzzy metrics and its application to the fixed point theory of multivalued mappings. Fixed Point Theory Appl. 2015(226), 1–9 (2015)

Castro-Company, F., Tirado, P.: On Yager and Hamacher $$t$$-norms and fuzzy metric spaces. Int. J. Intell. Syst. 29, 1173–1180 (2014)

George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395–399 (1994) [+]
Castro-Company, F., Romaguera, S., Tirado, P.: On the construction of metrics from fuzzy metrics and its application to the fixed point theory of multivalued mappings. Fixed Point Theory Appl. 2015(226), 1–9 (2015)

Castro-Company, F., Tirado, P.: On Yager and Hamacher $$t$$-norms and fuzzy metric spaces. Int. J. Intell. Syst. 29, 1173–1180 (2014)

George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395–399 (1994)

George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3, 933–940 (1995)

George, A., Veeramani, P.: On some results of analysis in fuzzy metric spaces. Fuzzy Sets Syst. 90(3), 365–368 (1995)

Gopal, D., Imdad, M., Vetro, C., Hasan, M.: Fixed point theory for cyclic weak $$\phi $$-contraction in fuzzy metric spaces. J. Nonlinear Anal. Appl. 2012, 1–11 (2012)

Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11(3), 95–107 (2014)

Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989)

Gregori, V., Miñana, J.J., Morillas, S.: On completable fuzzy metric spaces. Fuzzy Sets Syst. 267, 133–139 (2015)

Gregori, V., Miñana, J.J., Morillas, S., Sapena, A.: Cauchyness and convergence in fuzzy metric spaces. RACSAM 111, 25–37 (2017)

Gregori, V., Miñana, J.J., Roig, B., Sapena, A.: A characterization of strong completeness in fuzzy metric spaces. Mathematics 8(6), 861 (2020)

Gregori, V., Romaguera, S.: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485–489 (2000)

Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets Syst. 130(3), 399–404 (2002)

Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144(3), 411–420 (2004)

Gregori, V., Sapena, A.: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 125(2), 245–252 (2002)

Hamidi, M., Jahanpanah, S., Radfar, A.: Extended graphs based on KM-fuzzy metric spaces. Iran. J. Fuzzy Syst. 17(5), 81–95 (2020)

Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer, Netherlands (2000)

Kramosil, I., Michalek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11, 326–334 (1975)

Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535–537 (1942)

Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431–439 (2004)

Mihet, D.: On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets Syst. 158, 915–921 (2007)

Pedraza, T., Rodríguez-López, J., Valero, Ó.: Aggregation of fuzzy quasi-metrics. Inf. Sci. (2020). https://doi.org/10.1016/j.ins.2020.08.045

Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10(1), 314–334 (1960)

Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. In: North Holland Series in Probability and Applied Mathematics, New York, Amsterdam, Oxford (1983)

Schweizer, B., Sklar, A., Throp, O.: The metrization of statistical metric spaces. Pac. J. Math. 10(2), 673–676 (1960)

Shukla, S., Gopal, D., Sintunavarat, W.: A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets Syst. 350, 85–94 (2018)

Tirado, P.: Contraction mappings in fuzzy quasi-metric spaces and $$[0,1]$$-fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012)

Xiao, J.Z., Zhu, X.H., Zhou, H.: On the topological structure of $$KM$$-fuzzy metric spaces and normed spaces. IEEE Trans. Fuzzy Syst. 28(8), 1575–1584 (2020)

Zheng, D., Wang, P.: Meir-Keeler theorems in fuzzy metric spaces. Fuzzy Sets Syst. 370, 120–128 (2019)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem