Aanonsen S, Nævdal G, Oliver D, Reynolds A, Vallès B (2009) The ensemble Kalman filter in reservoir engineering—a review. SPE J 14(3):393–412
Aghasi A, Mendoza-Sanchez I, Miller EL, Ramsburg CA, Abriola LM (2013) A geometric approach to joint inversion with applications to contaminant source zone characterization. Inverse Prob 29(11):115014. https://doi.org/10.1088/0266-5611/29/11/115014
Ala NK, Domenico PA (1992) Inverse analytical techniques applied to coincident contaminant distributions at Otis Air Force Base, Massachusetts. Groundwater 30(2):212–218. https://doi.org/10.1111/j.1745-6584.1992.tb01793.x
[+]
Aanonsen S, Nævdal G, Oliver D, Reynolds A, Vallès B (2009) The ensemble Kalman filter in reservoir engineering—a review. SPE J 14(3):393–412
Aghasi A, Mendoza-Sanchez I, Miller EL, Ramsburg CA, Abriola LM (2013) A geometric approach to joint inversion with applications to contaminant source zone characterization. Inverse Prob 29(11):115014. https://doi.org/10.1088/0266-5611/29/11/115014
Ala NK, Domenico PA (1992) Inverse analytical techniques applied to coincident contaminant distributions at Otis Air Force Base, Massachusetts. Groundwater 30(2):212–218. https://doi.org/10.1111/j.1745-6584.1992.tb01793.x
Amirabdollahian M, Datta B (2013) Identification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overview. J Environ Protect. https://doi.org/10.4236/jep.2013.45a004
Aral MM, Guan J (1996) Genetic algorithms in search of groundwater pollution sources. In: Advances in groundwater pollution control and remediation. Springer, Netherlands, Dordrecht, pp 347–369. https://doi.org/10.1007/978-94-009-0205-3_17
Ayvaz MT (2016) A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems. J Hydrol 538:161–176. https://doi.org/10.1016/j.jhydrol.2016.04.008
Bagtzoglou AC, Tompson AFB, Dougherty DE (1991) Probabilistic simulation for reliable solute source identification in heterogeneous porous media. In: Water resources engineering risk assessment. Springer, Berlin, pp 189–201. https://doi.org/10.1007/978-3-642-76971-9_12
Bagtzoglou AC, Dougherty DE, Tompson AFB (1992) Application of particle methods to reliable identification of groundwater pollution sources. Water Resour Manag 6(1):15–23. https://doi.org/10.1007/BF00872184
Cao T, Zeng X, Wu J, Wang D, Sun Y, Zhu X, Lin J, Long Y (2019) Groundwater contaminant source identification via Bayesian model selection and uncertainty quantification. Hydrogeol J 27(8):2907–2918. https://doi.org/10.1007/s10040-019-02055-3
Capilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geosci 31(7):907–927
Carrera J (1984) Estimation of aquifer parameters under transient and steady-state conditions. PhD thesis, University of Arizona, Department of Hydrology and Water Resources
Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions. 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210
Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29(8):1107–1122
Dagan G (1982) Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 2. The solute transport. Water Resour Res 18(4):835–848
Datta B, Beegle J, Kavvas M, Orlob G (1989) Development of an expert system embedding pattern recognition techniques for pollution source identification. University of California-Davis, Technical report
Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367
Gómez-Hernández J, Wen XH (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8(1):19–55
Gorelick SM (1981) Numerical management models of groundwater pollution. Ph.D., Stanford University
Gorelick SM, Evans B, Remson I (1983) Identifying sources of groundwater pollution: an optimization approach. Water Resour Res 19(3):779–790. https://doi.org/10.1029/WR019i003p00779
Haario H, Laine M, Mira A, Saksman E (2006) Dram: efficient adaptive McMC. Statist Comput 16(4):339–354
Hosseini AH, Deutsch CV, Mendoza CA, Biggar KW (2011) Inverse modeling for characterization of uncertainty in transport parameters under uncertainty of source geometry in heterogeneous aquifers. J Hydrol 405(3–4):402–416. https://doi.org/10.1016/j.jhydrol.2011.05.039
Hwang JC, Koerner RM (1983) Groundwater pollution source identification from limited monitoring data. Part 1—theory and feasibility. J Hazard Mater 8:105–119
Jha MK, Datta B (2014) Linked simulation–optimization based dedicated monitoring network design for unknown pollutant source identification using dynamic time warping distance. Water Resour Manag 28(12):4161–4182. https://doi.org/10.1007/s11269-014-0737-5
Jin X, Ranjithan RS, Mahinthakumar GK (2014) A monitoring network design procedure for three-dimensional (3D) groundwater contaminant source identification. Environ Forensics 15(1):78–96. https://doi.org/10.1080/15275922.2013.873095
Li L, Zhou H, Franssen H, Gómez-Hernández J (2011) Groundwater flow inverse modeling in non-multigaussian media: performance assessment of the normal-score ensemble kalman filter. Hydrol Earth Syst Sci Discuss 8(4):6749–6788
Li L, Zhou H, Gómez-Hernández JJ (2011) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (made) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404(3–4):278–293
Li L, Zhou H, Gómez-Hernández J, Hendricks Franssen H (2012) Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. J Hydrol 428:152
Mahinthakumar GK, Sayeed M (2005) Hybrid genetic algorithm-local search methods for solving groundwater source identification inverse problems. J Water Resourc Plan Manag 131(1):45–57. https://doi.org/10.1061/(asce)0733-9496(2005)131:1(45)
Mahinthakumar GK, Sayeed M (2006) Reconstructing groundwater source release histories using hybrid optimization approaches. Environ Forensics 7(1):45–54. https://doi.org/10.1080/15275920500506774
Mirghani BY, Mahinthakumar KG, Tryby ME, Ranjithan RS, Zechman EM (2009) A parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problems. Adv Water Resour 32(9):1373–1385. https://doi.org/10.1016/j.advwatres.2009.06.001
Singh RM, Datta B (2004) Groundwater pollution source identification and simultaneous parameter estimation using pattern matching by artificial neural network. Environ Forensics 5(3):143–153. https://doi.org/10.1080/15275920490495873
Singh RM, Datta B, Jain A (2004) Identification of unknown groundwater pollution sources using artificial neural networks. J Water Resour Plan Manag 130(6):506–514. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:6(506)
Skaggs TH, Kabala ZJ (1994) Recovering the release history of a groundwater contaminant. Water Resour Res 30(1):71–79. https://doi.org/10.1029/93WR02656
Snodgrass MF, Kitanidis PK (1997) A geostatistical approach to contaminant source identification. Water Resour Res 33(4):537–546. https://doi.org/10.1029/96WR03753
Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia
Todaro, D’Oria M, Tanda MG, Gómez-Hernández JJ (2021) Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer. J Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126215
Wagner BJ (1992) Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling. J Hydrol 135(1–4):275–303. https://doi.org/10.1016/0022-1694(92)90092-A
Wasilkowski GW, Wozniakowski H (1995) Explicit cost bounds of algorithms for multivariate tensor product problems. J Complex 11(1):1–56
Woodbury A, Sudicky E, Ulrych TJ, Ludwig R (1998) Three-dimensional plume source reconstruction using minimum relative entropy inversion. J Contam Hydrol 32(1–2):131–158. https://doi.org/10.1016/S0169-7722(97)00088-0
Woodbury AD, Ulrych TJ (1996) Minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant. Water Resour Res 32(9):2671–2681. https://doi.org/10.1029/95WR03818
Xu T, Gómez-Hernández JJ (2016) Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering. Water Resour Res 52(8):6587–6595. https://doi.org/10.1002/2016WR019111
Xu T, Gómez-Hernández JJ (2018) Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter. Adv Water Resour 112:106–123. https://doi.org/10.1016/j.advwatres.2017.12.011
Xu T, Gómez-Hernández JJ, Zhou H, Li L (2013) The power of transient piezometric head data in inverse modeling: an application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Adv Water Resour 54:100–118. https://doi.org/10.1016/j.advwatres.2013.01.006
Xu T, Jaime Gómez-Hernández J, Li L, Zhou H (2013) Parallelized ensemble Kalman filter for hydraulic conductivity characterization. Comput Geosci 52:42–49
Yeh HD, Lin CC, Chen CF (2016) Reconstructing the release history of a groundwater contaminant based on AT123D. J Hydro-Environ Res 13:89–102. https://doi.org/10.1016/j.jher.2015.06.001
Zeng L, Shi L, Zhang D, Wu L (2012) A sparse grid based Bayesian method for contaminant source identification. Adv Water Resour 37:1–9. https://doi.org/10.1016/j.advwatres.2011.09.011
Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37
Zhou Z, Tartakovsky DM (2021) Markov chain Monte Carlo with neural network surrogates: application to contaminant source identification. Stoch Environ Res Risk Assess 35(3):639–651
[-]