- -

On decay rates of the solutions of parabolic Cauchy problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On decay rates of the solutions of parabolic Cauchy problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Lusky, Wolfgang es_ES
dc.contributor.author Taskinen, Jari es_ES
dc.date.accessioned 2022-11-08T19:01:29Z
dc.date.available 2022-11-08T19:01:29Z
dc.date.issued 2021-06 es_ES
dc.identifier.issn 0308-2105 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189475
dc.description.abstract [EN] We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space R-N. We show that given a weighted L-p-space L-w(p)(R-N) with 1 <= p < infinity and a fast growing weight w, there is a Schauder basis (e(n))(n=1)(infinity) in L-w(p)(R-N) with the following property: given an arbitrary positive integer m there exists n(m) > 0 such that, if the initial data f belongs to the closed linear span of e(n) with n >= n(m), then the decay rate of the solution of the problem is at least t(-m) for large times t. The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m. es_ES
dc.description.sponsorship The research of Bonet was partially supported by the projects MTM2016-76647P and GV Prometeo/2017/102 (Spain). The research of Taskinen was partially supported by a research grant from the Faculty of Science of the University of Helsinki. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Proceedings of the Royal Society of Edinburgh Section A Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Parabolic PDE es_ES
dc.subject Cauchy problem es_ES
dc.subject Banach space es_ES
dc.subject Schauder basis es_ES
dc.subject Decay rate es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On decay rates of the solutions of parabolic Cauchy problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/prm.2020.48 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2021). On decay rates of the solutions of parabolic Cauchy problems. Proceedings of the Royal Society of Edinburgh Section A Mathematics. 151(3):1021-1039. https://doi.org/10.1017/prm.2020.48 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/prm.2020.48 es_ES
dc.description.upvformatpinicio 1021 es_ES
dc.description.upvformatpfin 1039 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 151 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\451200 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem