Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Lusky, Wolfgang | es_ES |
dc.contributor.author | Taskinen, Jari | es_ES |
dc.date.accessioned | 2022-11-08T19:01:29Z | |
dc.date.available | 2022-11-08T19:01:29Z | |
dc.date.issued | 2021-06 | es_ES |
dc.identifier.issn | 0308-2105 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189475 | |
dc.description.abstract | [EN] We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space R-N. We show that given a weighted L-p-space L-w(p)(R-N) with 1 <= p < infinity and a fast growing weight w, there is a Schauder basis (e(n))(n=1)(infinity) in L-w(p)(R-N) with the following property: given an arbitrary positive integer m there exists n(m) > 0 such that, if the initial data f belongs to the closed linear span of e(n) with n >= n(m), then the decay rate of the solution of the problem is at least t(-m) for large times t. The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m. | es_ES |
dc.description.sponsorship | The research of Bonet was partially supported by the projects MTM2016-76647P and GV Prometeo/2017/102 (Spain). The research of Taskinen was partially supported by a research grant from the Faculty of Science of the University of Helsinki. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Cambridge University Press | es_ES |
dc.relation.ispartof | Proceedings of the Royal Society of Edinburgh Section A Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Parabolic PDE | es_ES |
dc.subject | Cauchy problem | es_ES |
dc.subject | Banach space | es_ES |
dc.subject | Schauder basis | es_ES |
dc.subject | Decay rate | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On decay rates of the solutions of parabolic Cauchy problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1017/prm.2020.48 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2021). On decay rates of the solutions of parabolic Cauchy problems. Proceedings of the Royal Society of Edinburgh Section A Mathematics. 151(3):1021-1039. https://doi.org/10.1017/prm.2020.48 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1017/prm.2020.48 | es_ES |
dc.description.upvformatpinicio | 1021 | es_ES |
dc.description.upvformatpfin | 1039 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 151 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\451200 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |