- -

Optimization model to support sustainable crop planning for reducing unfairness among farmers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization model to support sustainable crop planning for reducing unfairness among farmers

Mostrar el registro completo del ítem

Esteso, A.; Alemany Díaz, MDM.; Ortiz Bas, Á.; Liu, S. (2022). Optimization model to support sustainable crop planning for reducing unfairness among farmers. Central European Journal of Operations Research. 30(3):1101-1127. https://doi.org/10.1007/s10100-021-00751-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189479

Ficheros en el ítem

Metadatos del ítem

Título: Optimization model to support sustainable crop planning for reducing unfairness among farmers
Autor: Esteso, Ana Alemany Díaz, María Del Mar Ortiz Bas, Ángel Liu, Shaofeng
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Agri-food production must increase while food waste needs to be reduced for improving the position of farmers. To do so it is necessary to sustainably manage agri-food supply chains beginning with the crop planning ...[+]
Palabras clave: Sustainability , Crop planning , Agri-food , Optimization , Unfairness
Derechos de uso: Cerrado
Fuente:
Central European Journal of Operations Research. (issn: 1435-246X )
DOI: 10.1007/s10100-021-00751-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10100-021-00751-8
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/691249/EU
info:eu-repo/grantAgreement/MECD//FPU15%2F03595/ES/FPU15%2F03595/
Agradecimientos:
We acknowledge the support of the Project 691249, RUCAPS: "Enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems", funded by the European ...[+]
Tipo: Artículo

References

Adekanmbi O, Olugbara O (2015) Multiobjective optimization of crop-mix planning using generalized differential evolution algorithm. J Agric Sci Technol 17:1103–1114

Ahumada O, Villalobos JR (2011a) Operational model for planning the harvest and distribution of perishable agricultural products. Int J Prod Econ 133:677–687. https://doi.org/10.1016/j.ijpe.2011.05.015

Ahumada O, Villalobos JR (2011b) A tactical model for planning the production and distribution of fresh produce. Ann Oper Res 190:339–358. https://doi.org/10.1007/s10479-009-0614-4 [+]
Adekanmbi O, Olugbara O (2015) Multiobjective optimization of crop-mix planning using generalized differential evolution algorithm. J Agric Sci Technol 17:1103–1114

Ahumada O, Villalobos JR (2011a) Operational model for planning the harvest and distribution of perishable agricultural products. Int J Prod Econ 133:677–687. https://doi.org/10.1016/j.ijpe.2011.05.015

Ahumada O, Villalobos JR (2011b) A tactical model for planning the production and distribution of fresh produce. Ann Oper Res 190:339–358. https://doi.org/10.1007/s10479-009-0614-4

Ahumada O, Villalobos JR, Mason AN (2012) Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agric Syst 112:17–26. https://doi.org/10.1016/j.agsy.2012.06.002

Ajmal MM, Khan M, Hussain M, Helo P (2018) Conceptualizing and incorporating social sustainability in the business world. Int J Sustain Dev World Ecol 25:327–339. https://doi.org/10.1080/13504509.2017.1408714

Albornoz VM, Sáez JL, Véliz MI (2017) Delineation of rectangular management zones and crop planning under uncertainty in the soil properties. Commun Comput Inf Sci 695:117–131. https://doi.org/10.1007/978-3-319-53982-9_7

Albornoz VM, Véliz MI, Ortega R, Ortíz-Araya V (2020) Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty. Ann Oper Res 286:617–634. https://doi.org/10.1007/s10479-019-03198-y

Alfandari L, Lemalade JL, Nagih A, Plateau G (2011) A MIP flow model for crop-rotation planning in a context of forest sustainable development. Ann Oper Res 190:149–164. https://doi.org/10.1007/s10479-009-0553-0

Alfandari L, Plateau A, Schepler X (2015) A branch-and-price-and-cut approach for sustainable crop rotation planning. Eur J Oper Res 241:872–879. https://doi.org/10.1016/j.ejor.2014.09.066

Anastasiadis F, Tsolakis N, Srai J (2018) Digital technologies towards resource efficiency in the agrifood sector: key challenges in developing countries. Sustainability 10:4850. https://doi.org/10.3390/su10124850

Azevedo S, Silva M, Matias J, Dias G (2018) The influence of collaboration initiatives on the sustainability of the cashew supply chain. Sustainability 10:2075. https://doi.org/10.3390/su10062075

Banasik A, Bloemhof-Ruwaard JM, Kanellopoulos A et al (2018) Multi-criteria decision making approaches for green supply chains: a review. Flex Serv Manuf J 30:366–396. https://doi.org/10.1007/s10696-016-9263-5

Blanco V, Carpente L, Hinojosa Y, Puerto J (2010) Planning for agricultural forage harvesters and trucks: model, heuristics, and case study. Netw Spat Econ 10:321–343. https://doi.org/10.1007/s11067-009-9120-0

Catalá LP, Durand GA, Blanco AM, Bandoni JA (2013) Mathematical model for strategic planning optimization in the pome fruit industry. Agric Syst 115:63–71. https://doi.org/10.1016/j.agsy.2012.09.010

Cid-Garcia NM, Ibarra-Rojas OJ (2019) An integrated approach for the rectangular delineation of management zones and the crop planning problems. Comput Electron Agric 164:104925. https://doi.org/10.1016/j.compag.2019.104925

Cid-Garcia NM, Bravo-Lozano AG, Rios-Solis YA (2014) A crop planning and real-time irrigation method based on site-specific management zones and linear programming. Comput Electron Agric 107:20–28. https://doi.org/10.1016/j.compag.2014.06.002

Darby-Dowman K, Barker S, Audsley E, Parsons D (2000) A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture. J Oper Res Soc 51:83–89. https://doi.org/10.1057/palgrave.jors.2600858

Djekic I, Sanjuán N, Clemente G et al (2018) Review on environmental models in the food chain—current status and future perspectives. J Clean Prod 176:1012–1025. https://doi.org/10.1016/j.jclepro.2017.11.241

dos Santos LMR, Costa AM, Arenales MN, Santos RHS (2010) Sustainable vegetable crop supply problem. Eur J Oper Res 204:639–647. https://doi.org/10.1016/j.ejor.2009.11.026

Dury J, Schaller N, Garcia F et al (2012) Models to support cropping plan and crop rotation decisions: a review. Agron Sustain Dev 32:567–580. https://doi.org/10.1007/s13593-011-0037-x

Ertogral K, Wu SD (2000) Auction-theoretic coordination of production planning in the supply chain. IIE Trans 32:931–940. https://doi.org/10.1080/07408170008967451

Esteso A, Alemany MME, Ortiz A (2018a) Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. Int J Prod Res 56:4418–4446. https://doi.org/10.1080/00207543.2018.1447706

Esteso A, Alemany MME, Ortiz Á, Peidro D (2018b) A multi-objective model for inventory and planned production reassignment to committed orders with homogeneity requirements. Comput Ind Eng 124:180–194. https://doi.org/10.1016/j.cie.2018.07.025

European Commission (2018) Key policy objectives of the future CAP. https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/future-cap/key-policy-objectives-future-cap_en#nineobjectives. Accessed 18 July 2020

Fang Y, Jiang Y, Sun L, Han X (2018) Design of green cold chain networks for imported fresh agri-products in belt and road development. Sustainability 10:1572. https://doi.org/10.3390/su10051572

FAO Sustainability Pathways. http://www.fao.org/nr/sustainability/food-loss-and-waste/en/. Accessed 29 Jan 2020

Filippi C, Mansini R, Stevanato E (2017) Mixed integer linear programming models for optimal crop selection. Comput Oper Res 81:26–39. https://doi.org/10.1016/j.cor.2016.12.004

Flores H, Villalobos JR (2018) A modeling framework for the strategic design of local fresh-food systems. Agric Syst 161:1–15. https://doi.org/10.1016/j.agsy.2017.12.001

Flores H, Villalobos JR, Ahumada O et al (2019) Use of supply chain planning tools for efficiently placing small farmers into high-value, vegetable markets. Comput Electron Agric 157:205–217. https://doi.org/10.1016/j.compag.2018.12.050

Forrester RJ, Rodriguez M, Forrester R, Rodriguez M (2018) An integer programming approach to crop rotation planning at an organic farm. UMAP J 38:5–25

Hasuike T, Kashima T, Matsumoto S (2018) Multiobjective crop planning considering optimal matching between retailers and farmers with contract. J Adv Mech Des Syst Manuf 12:1–16. https://doi.org/10.1299/jamdsm.2018jamdsm0071

Hong Y, Berentsen P, Heerink N et al (2019) The future of intercropping under growing resource scarcity and declining grain prices—a model analysis based on a case study in Northwest China. Agric Syst 176:102661. https://doi.org/10.1016/j.agsy.2019.102661

Jarin S, Khatun MK, Shafie AA (2016) Multi-objective constrained algorithm (MCA) and non-dominated sorting genetic algorithm (NSGA-ii) for solving multi-objective crop planning problem. ARPN J Eng Appl Sci 11:4079–4086

Jaya Brindha G, Gopi ES (2019) Maximizing profits in crop planning using socio evolution and learning optimization. Stud Comput Intell 828:151–174. https://doi.org/10.1007/978-981-13-6569-0_8

Jonkman J, Barbosa-Póvoa AP, Bloemhof JM (2019) Integrating harvesting decisions in the design of agro-food supply chains. Eur J Oper Res 276:247–258. https://doi.org/10.1016/j.ejor.2018.12.024

Li J, Rodriguez D, Zhang D, Ma K (2015) Crop rotation model for contract farming with constraints on similar profits. Comput Electron Agric 119:12–18. https://doi.org/10.1016/j.compag.2015.10.002

Mason AN, Villalobos JR (2015) Coordination of perishable crop production using auction mechanisms. Agric Syst 138:18–30. https://doi.org/10.1016/j.agsy.2015.04.008

Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl Math Comput 213:455–465. https://doi.org/10.1016/j.amc.2009.03.037

Mellaku MT, Reynolds TW, Woldeamanuel T (2018) Linear programming-based cropland allocation to enhance performance of smallholder crop production: a pilot study in Abaro Kebele, Ethiopia. Resources. https://doi.org/10.3390/resources7040076

Moon I, Jeong YJ, Saha S (2018) Investment and coordination decisions in a supply chain of fresh agricultural products. Oper Res. https://doi.org/10.1007/s12351-018-0411-4

Najafabadi MM, Ziaee S, Nikouei A, Ahmadpour Borazjani M (2019) Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: a case study. Agric Syst 173:218–232. https://doi.org/10.1016/j.agsy.2019.02.006

Nguyen T-D, Venkatadri U, Nguyen-Quang T et al (2019) Optimization model for fresh fruit supply chains: case-study of dragon fruit in Vietnam. AgriEngineering 2:1–26. https://doi.org/10.3390/agriengineering2010001

Pérez-Mesa JC, Piedra-Muñoz L, García-Barranco MC, Giagnocavo C (2019) Response of fresh food suppliers to sustainable supply chain management of large European retailers. Sustainability 11:3885. https://doi.org/10.3390/su11143885

Pourhejazy P, Kwon O (2016) The new generation of operations research methods in supply chain optimization: a review. Sustainability 8:1033. https://doi.org/10.3390/su8101033

Prima Dania WA, Xing K, Amer Y (2018) Collaboration behavioural factors for sustainable agri-food supply chains: a systematic review. J Clean Prod 186:851–864. https://doi.org/10.1016/j.jclepro.2018.03.148

Radulescu M, Radulescu CZ (2013) Simulation and optimization for crop planning under risk. In: Proceedings—8th EUROSIM congr model simulation, EUROSIM 2013, pp 409–414. https://doi.org/10.1109/EUROSIM.2013.117

Rǎdulescu M, Zbǎganu G, Rǎdulescu CZ (2008) Crop planning in the presence of production quotas (invited paper). In: Proceedings—UKSim 10th Int Conf Comput Model Simulation, EUROSIM/UKSim2008, pp 549–554. https://doi.org/10.1109/UKSIM.2008.40

Rǎdulescu M, Rǎdulescu CZ, Zbǎganu G (2014) A portfolio theory approach to crop planning under environmental constraints. Ann Oper Res 219:243–264. https://doi.org/10.1007/s10479-011-0902-7

Ren C, Li Z, Zhang H (2019) Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. J Clean Prod 210:12–24. https://doi.org/10.1016/j.jclepro.2018.10.348

RUC-APS (2016) Enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems. In: Proj. 691249 funded by Eur. Union’s Res. Innov. Program. under H2020 Marie Skłodowska-Curie Actions. www.ruc-aps.eu

Santos LMR, Munari P, Costa AM, Santos RHS (2015) A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes. Eur J Oper Res 245:581–590. https://doi.org/10.1016/j.ejor.2015.03.035

Sarker RA, Quaddus MA (2002) Modelling a nationwide crop planning problem using a multiple criteria decision making tool. Comput Ind Eng 42:541–553. https://doi.org/10.1016/S0360-8352(02)00022-0

Sarker R, Ray T (2009) An improved evolutionary algorithm for solving multi-objective crop planning models. Comput Electron Agric 68:191–199. https://doi.org/10.1016/j.compag.2009.06.002

Sebatjane M, Adetunji O (2021) Optimal lot-sizing and shipment decisions in a three-echelon supply chain for growing items with inventory level- and expiration date-dependent demand. Appl Math Model 90:1204–1225. https://doi.org/10.1016/j.apm.2020.10.021

Seuring S, Müller M (2008) From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod 16:1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020

Stadtler H (2009) A framework for collaborative planning and state-of-the-art. Or Spectr 31:5–30. https://doi.org/10.1007/s00291-007-0104-5

Suthar RG, Barrera JI, Judge J et al (2019) Modeling postharvest loss and water and energy use in Florida tomato operations. Postharvest Biol Technol 153:61–68. https://doi.org/10.1016/j.postharvbio.2019.03.004

Tan Q, Zhang S, Li R (2017) Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water (switzerland). https://doi.org/10.3390/w9070488

United Nations (2019) The sustainable development goals report 2019. United Nations Publ issued by Dep Econ Soc Aff 64

Villa G, Adenso-Díaz B, Lozano S (2019) An analysis of geographic and product diversification in crop planning strategy. Agric Syst 174:117–124. https://doi.org/10.1016/j.agsy.2019.05.006

Zaraté P, Alemany M, del Pino M, et al (2019) How to support group decision making in horticulture: an approach based on the combination of a centralized mathematical model and a group decision support system. In: Lecture Notes in Business Information Processing, pp 83–94

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem