- -

Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO

Mostrar el registro completo del ítem

Martínez-Luzuriaga, PN.; Reynoso-Meza, G. (2022). Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO. Revista Iberoamericana de Automática e Informática industrial. 20(1):44-55. https://doi.org/10.4995/riai.2022.16517

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191369

Ficheros en el ítem

Metadatos del ítem

Título: Influencia de los hiper-parámetros en algoritmos basados en Evolución Diferencial para el ajuste de controladores del tipo PID en procesos SISO
Otro titulo: Influence of hyper-parameters in algorithms based on Differential Evolution for the adjustment of PID-type controllers in SISO processes through mono and multi-objective optimisation
Autor: Martínez-Luzuriaga, Paúl Nicolai Reynoso-Meza, Gilberto
Fecha difusión:
Resumen:
[EN] PID Controllers remain as the reliable front-line solution in feedback control loops. Even when their simplicity is one of the main reasons for this, the right tuning of their parameters is essential to guarantee their ...[+]


[ES] Los controladores PID se mantienen como una solución confiable de primera línea en sistemas de control retroalimentado. Incluso cuando su sencillez es una de las principales razones de ello, un correcto ajuste de sus ...[+]
Palabras clave: PID tuning , Evolutionary algorithms , Hyper-parameters tuning , Optimisation , Ajuste de controladores PID , Algoritmos evolutivos , Ajuste de hiper-parámetros , Optimización
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16517
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16517
Código del Proyecto:
info:eu-repo/grantAgreement/CNPq//310079/2019-5-PQ2
info:eu-repo/grantAgreement/CNPq//4408164/2021-2-Univ
info:eu-repo/grantAgreement/CNPq//PRONEX-51432/2018-PPP
Agradecimientos:
Trabajo financiado parcialmente por el Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), y la Fundação Araucária (FAPPR) - Brasil - proyectos 310079/2019-5-PQ2, 4408164/2021-2-Univ y PRONEX-51432/2018-PPP.[+]
Tipo: Artículo

References

Alhanjouri, M., 2017. Modern Optimization Techniques for PID Parameters of Electrohydraulic Servo Control System. Int. J. Recent Innov. Trends Comput. Commun. 5 (March), 71-79.

Ang, K. H., Chong, G., Li, Y., 2005. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology 13 (4), 559- 576. https://doi.org/10.1109/TCST.2005.847331

Åström, K. J., Hagglund, T., 1995. PID controllers: theory, design, and tuning. Vol. 2. ISA. [+]
Alhanjouri, M., 2017. Modern Optimization Techniques for PID Parameters of Electrohydraulic Servo Control System. Int. J. Recent Innov. Trends Comput. Commun. 5 (March), 71-79.

Ang, K. H., Chong, G., Li, Y., 2005. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology 13 (4), 559- 576. https://doi.org/10.1109/TCST.2005.847331

Åström, K. J., Hagglund, T., 1995. PID controllers: theory, design, and tuning. Vol. 2. ISA.

Åström, K. J., Hagglund, T., 2004. Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14 (6), 635-650. https://doi.org/10.1016/j.jprocont.2004.01.002

Bilal, Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A., 2020. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 90 (October 2019). https://doi.org/10.1016/j.engappai.2020.103479

Borase, R., Maghade, D., Sondkar, S., Pawar, S., 06 2021. A review of pid control, tuning methods and applications. International Journal of Dynamics and Control 9. https://doi.org/10.1007/s40435-020-00665-4

Brest, J., Zumer, V., Mauˇcec, M. S., 2006. Self-adaptive differential evolution algorithm in constrained real-parameter optimization. 2006 IEEE Congr. Evol. Comput. CEC 2006, 215-222.

Calvo, B., Santafe, G., 2016. scmamp: Statistical comparison of multiple algorithms in multiple problems. R Journal 8 (1), 248-256. DOI: 10.32614/rj-2016-017 https://doi.org/10.32614/RJ-2016-017

Chiha, I., Ghabi, J., Liouane, N., 05 2012. Tuning pid controller with multiobjective differential evolution. 5th International Symposium on Communications Control and Signal Processing, ISCCSP 2012. https://doi.org/10.1109/ISCCSP.2012.6217801

Coello, C. A. C., Lamont, G. B., Veldhuizen, D. A. V., Goldberg, D. E., Koza, J. R., 2007. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer.

Das, S., Suganthan, P. N., 2011. Differential evolution: A survey of the stateof- the-art. IEEE Trans. Evol. Comput. 15 (1), 4-31. https://doi.org/10.1109/TEVC.2010.2059031

Dashti, M., Shojaee, K., Seyedkashi, S. M., Behnam, M., 2010. Tuning of digital PID controller using particle swarm optimization. Proc. 29th Chinese Control Conf. CCC'10, 3383-3389.

De Landgraaf, W. A., Eiben, A. E., Nannen, V., 2007. Parameter calibration using meta-algorithms. 2007 IEEE Congr. Evol. Comput. CEC 2007, 71- 78. https://doi.org/10.1109/CEC.2007.4424456

Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1-30.

Eiben, A. E., Michalewicz, Z., Schoenauer, M., Smith, J. E., 2007. Parameter control in evolutionary algorithms. Stud. Comput. Intell. 54 (2), 19-46. https://doi.org/10.1007/978-3-540-69432-8_2

Fister, D., Fister, I., Fister, I., ˇ Safariˇc, R., 2016. Parameter tuning of PID controller with reactive nature-inspired algorithms. Rob. Auton. Syst. 84, 64-75. https://doi.org/10.1016/j.robot.2016.07.005

Jaen-Cuellar, A. Y., Romero-Troncoso, R. D. J., Morales-Velazquez, L.,Osornio-Rios, R. A., 2013. PID-controller tuning optimization with genetic algorithms in servo systems. Int. J. Adv. Robot. Syst. 10. https://doi.org/10.5772/56697

Konstantinov, S. V., Baryshnikov, A. A., 2017. Comparative Analysis of Evolutionary Algorithms for the Problem of Parametric Optimization of PID Controllers. Procedia Comput. Sci. 103 (October 2016), 100-107. https://doi.org/10.1016/j.procs.2017.01.021

Kozak, S., 2014. State-of-the-art in control engineering. J. Electr. Syst. Inf. Technol. 1 (1), 1-9.

Lakshmi, K. V., Srinivas, P., Harshad, S., 2019. Differential Evolution Based PID Controller For Three Tank Level Process. International Journal of Engineering and advanced technology (IJEAT) 8 (4), 1274-1278.

Messac, A., 1996. Physical programming: Effective optimization for computational design. AIAA Journal 34 (1), 149-158. DOI: 10.2514/3.13035 https://doi.org/10.2514/3.13035

Miettinen, K., 1998. Nonlinear Multiobjective Optimization. Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-5563-6

Montero, E., Riff, M. C., Neveu, B., 2014. A beginner's guide to tuning methods. Appl. Soft Comput. J. 17, 39-51. https://doi.org/10.1016/j.asoc.2013.12.017

Nannen, V., Eiben, A. E., 2007. Relevance estimation and value calibration of evolutionary algorithm parameters. IJCAI International Joint Conference on Artificial Intelligence, 975-980. https://doi.org/10.1109/CEC.2007.4424460

Neumuller, C., Wagner, S., Kronberger, G., Affenzeller, M., 2012. Parameter meta-optimization of metaheuristic optimization algorithms. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6927 LNCS (PART 1), 367-374. https://doi.org/10.1007/978-3-642-27549-4_47

Price, K. V., Storn, R. M., Lampinen, J. A., 2005. Differential evolution: a practical approach to global optimization. Natural computing series. Springer, Berlin ; New York.

Qin, A. K., Huang, V. L., Suganthan, P. N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13 (2), 398-417. DOI: 10.1109/TEVC.2008.927706 https://doi.org/10.1109/TEVC.2008.927706

Qin, A. K., Suganthan, P. N., 2005. Self-adaptive differential evolution algorithm for numerical optimization. 2005 IEEE Congr. Evol. Comput. IEEE CEC 2005. Proc. 2, 1785-1791.

Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M., 2014a. Controller tuning using evolutionary multi-objective optimisation: Current trends and applications. Control Eng. Pract. 28 (1), 58-73. https://doi.org/10.1016/j.conengprac.2014.03.003

Reynoso-Meza, G., Ferragud, X. B., Saez, J. S., Dura, J. M. H., 2017. Controller Tuning with Evolutionary Multiobjective Optimization: A Holistic Multiobjective Optimization Design Procedure. Vol. 85. Springer. https://doi.org/10.1007/978-3-319-41301-3

Reynoso-Meza, G., Sanchis, J., Blasco, X., Garc'ıa-Nieto, S., 2014b. Physical programming for preference driven evolutionary multi-objective optimization. Applied Soft Computing Journal 24, 341-362. DOI: 10.1016/j.asoc.2014.07.009 https://doi.org/10.1016/j.asoc.2014.07.009

Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2012. Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Syst. Appl. 39 (9), 7895-7907. https://doi.org/10.1016/j.eswa.2012.01.111

Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2014c. A stabilizing PID controller sampling procedure for stochastic optimizers. Vol. 19. IFAC. https://doi.org/10.3182/20140824-6-ZA-1003.00894

Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M., 2016. Preference driven multi-objective optimization design procedure for industrial controller tuning. Inf. Sci. (Ny). 339, 108-131. https://doi.org/10.1016/j.ins.2015.12.002

Rodríguez-Molina, A., Mezura-Montes, E., Villarreal-Cervantes, M. G., Aldape-P'erez, M., 2020. Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Appl. Soft Comput. J. 93, 106342. https://doi.org/10.1016/j.asoc.2020.106342

Saad, M. S., Jamaluddin, H., Darus, I. Z., 2012. PID controller tuning using evolutionary algorithms. WSEAS Trans. Syst. Control 7 (4), 139-149.

Sanchis, J., Martnez, M. A., Blasco, X., Reynoso-Meza, G., 2010. Modelling preferences in multi-objective engineering design. Engineering Applications of Artificial Intelligence 23 (8), 1255-1264. https://doi.org/10.1016/j.engappai.2010.07.005

Singh, J., Singh, B., Joshi, N., 2017. Tuning Techniques of PID controller: A review. Int. J. Emerg. Technol. (Special Issue NCETST 8 (1), 481-485.

Smit, S. K., Eiben, A. E., 2010. Parameter tuning of evolutionary algorithms: Generalist vs. specialist. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6024 LNCS (PART 1), 542- 551. https://doi.org/10.1007/978-3-642-12239-2_56

Smit, S. K., Eiben, A. E., Amsterdam, V. U., 2009. Comparing parameter tuning methods for evolutionary algorithms. In: 2009 IEEE Congress on Evolutionary Computation. pp. 399-406. https://doi.org/10.1109/CEC.2009.4982974

Storn, R., Price, K., 1997. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 11 (4), 341-359. https://doi.org/10.1023/A:1008202821328

Tan, N., Kaya, I., Yeroglu, C., Atherton, D. P., 2006. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Convers. Manag. 47 (18-19), 3045-3058. https://doi.org/10.1016/j.enconman.2006.03.022

Tanabe, R., Fukunaga, A., 2015. Tuning differential evolution for cheap, medium, and expensive computational budgets. 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc., 2018-2025. https://doi.org/10.1109/CEC.2015.7257133

Ugolotti, R., Sani, L., Cagnoni, S., 2019. What can we learn from multiobjective meta-optimization of Evolutionary Algorithms in continuous domains? Mathematics 7 (3). https://doi.org/10.3390/math7030232

Urrea-Quintero, J.-H., Hernández-Riveros, J.-A., Mu˜noz-Galeano, N., 2018. Optimum PI/PID Controllers Tuning via an Evolutionary Algorithm. PID Control for Industrial Processes. https://doi.org/10.5772/intechopen.74297

Cervenka, M., Boudna, H., april 2018. Visual Guide on F and CR Parameters Influence on Differential Evolution Solution Quality. In: Engineering Mechanics 2018. pp. 234-238.

Vecek, N., Mernik, M., Filipicˇ, B., Cˇrepinsˇek, M., 2016. Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Inf. Sci. (Ny). 372, 446-469. https://doi.org/10.1016/j.ins.2016.08.066

Wolpert, D. H., Macready, W. G., 1997. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1), 67-82. https://doi.org/10.1109/4235.585893

Ziegler, J. G., Nichols, N. B., 1993. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control. Trans. ASME 115 (2B), 220-222. https://doi.org/10.1115/1.2899060

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem