Mostrar el registro sencillo del ítem
dc.contributor.author | Latorre, Marcos | es_ES |
dc.contributor.author | Romero, Xavier | es_ES |
dc.contributor.author | Montáns, Francisco Javier | es_ES |
dc.date.accessioned | 2023-01-25T19:00:06Z | |
dc.date.available | 2023-01-25T19:00:06Z | |
dc.date.issued | 2016-11 | es_ES |
dc.identifier.issn | 0020-7683 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/191460 | |
dc.description.abstract | [EN] Hyperelastic constitutive models for anisotropic biological materials are frequently based on orthotropic incompressible stored energy functions. The material parameters of these models are then obtained through an optimization procedure as to fit some stress-strain experimental data. For example, in arterial wall mechanics the material data usually employed for the Holzapfel-Gasser-Ogden and the Gasser-Ogden-Holzapfel models are two uniaxial tension curves from circumferential and axial specimens. The transverse strains from these specimens are frequently not taken into consideration. In this paper we analyze the evolution of those strains, showing that an unrealistic behaviour may be predicted. We then show how transverse strains may be prescribed using our What-You-Prescribe-Is-What-You-Get (WYPI-VVYG) model in a very intuitive way, still capturing the longitudinal stress-strain behavior in an exact manner without employing any constitutive parameter. This is possible because, in contrast to what it is usually done, we exactly solve the equilibrium and compatibility equations without imposing the shape of the stored energy function. Furthermore, we show that the small strains formulation is naturally recovered and that the physical insight from the infinitesimal theory is preserved. In fact, for incompressible materials, the present approach can be considered as a natural extension of the infinitesimal continuum elastic framework to large strains. This new physical insight clearly shows that if some subclasses of orthotropic incompressible material models are determined with just two uniaxial curves, then the transverse behavior should be contrasted with additional experimental observations. (C) 2016 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | Partial financial support for this work has been given by grants DPI2011-26635 and DPI2015-69801-R from the Direccion General de Proyectos de Investigacion of the Ministerio de Economia y Competitividad of Spain. F.J. Montans also acknowledges the support of the Department of Mechanical and Aerospace Engineering of University of Florida during the sabbatical period in which part of this work was performed and Ministerio de Educacion, Cultura y Deporte of Spain for the financial suport for that stay under grant PRX15/00065 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Solids and Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Composites | es_ES |
dc.subject | Biological tissues | es_ES |
dc.subject | Orthotropy | es_ES |
dc.subject | Hyperelasticity | es_ES |
dc.subject | Arterial wall mechanics | es_ES |
dc.subject | Transverse strains | es_ES |
dc.title | The relevance of transverse deformation effects in modeling soft biological tissues | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijsolstr.2016.08.006 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//PRX15%2F00065/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2011-26635//Modelado computacional de la termo-elasto-viscoplasticidad en grandes deformaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R//Modelado y simulación del comportamiento mecánico de materiales blandos anisótropos en grandes deformaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Latorre, M.; Romero, X.; Montáns, FJ. (2016). The relevance of transverse deformation effects in modeling soft biological tissues. International Journal of Solids and Structures. 99:57-70. https://doi.org/10.1016/j.ijsolstr.2016.08.006 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijsolstr.2016.08.006 | es_ES |
dc.description.upvformatpinicio | 57 | es_ES |
dc.description.upvformatpfin | 70 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 99 | es_ES |
dc.relation.pasarela | S\467299 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |