- -

Geometrical study of Middle Kingdom funerary complexes in Qubbet el-Hawa (Aswan, Egypt) based on 3D models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geometrical study of Middle Kingdom funerary complexes in Qubbet el-Hawa (Aswan, Egypt) based on 3D models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mozas-Calvache, Antonio Tomás es_ES
dc.contributor.author Pérez-García, José Luis es_ES
dc.contributor.author Gómez-López, José Miguel es_ES
dc.coverage.spatial east=32.8891169; north=24.1018399; name=Qubbet-El Hawa, Aswan Governorate 1231330, Egipte es_ES
dc.date.accessioned 2023-01-31T07:38:52Z
dc.date.available 2023-01-31T07:38:52Z
dc.date.issued 2023-01-18
dc.identifier.uri http://hdl.handle.net/10251/191518
dc.description.abstract [EN] This study describes the methodology developed and the main results obtained when analysing the geometrical behavior of three adjacent burial structures located in southern Egypt. The rock-cut tombs are composed of complex geometries such as halls, corridors, chambers and vertical shafts. Among other determining aspects, this complexity greatly conditioned the data acquisition and processing work. In this context, the main objective of this study was to develop a new methodology for obtaining geomatic products that support a complete geometrical analysis of the tombs. The researchers have used photogrammetric and laser scanning surveys to obtain accurate 3D models on a common reference system. The procedure used included obtaining several secondary products, such as several geometries (planes and cylinders) fitted from point clouds or plans and sections obtained from the 3D models. The geometric analysis has included several aspects: dimensions, proportions, orientations, wall flatness, inclinations, etc., and it is based on these products. The results obtained suggest and confirm several hypotheses about the constructive aspects of these hypogea based on a large amount of data, including the determination of a proportional canon used by the ancient Egyptians to plan and perform the excavation works of each funerary structure. The application of this methodology has demonstrated that this type of analysis is viable to unveil some important aspects of these structures and the constructive procedures carried out almost four millennia ago. Highlights: A new methodology is presented to develop geometrical analysis of burial structures based on 3D models. The methodology has been applied to three contiguous burial structures (hypogea), allowing the researchers to analyse some constructive aspects such as dimensions, proportions, orientations, flatness and inclinations. Results have demonstrated the advanced skills achieved by ancient Egyptians in construction techniques. es_ES
dc.description.abstract [ES] Este estudio describe la metodología desarrollada y los principales resultados obtenidos al analizar el comportamiento geométrico de tres estructuras funerarias contiguas situadas en el sur de Egipto. Las tumbas excavadas en la roca están compuestas de estructuras complejas como salas, pasillos, cámaras y pozos. Entre otros aspectos, esta complejidad condicionaba en gran medida la adquisición de datos y el trabajo de procesado. En este contexto, el objetivo principal de este estudio fue desarrollar una nueva metodología para obtener productos geomáticos que facilitaran un análisis geométrico completo de las tumbas. Se han realizado diversos levantamientos fotogramétricos y de escaneado láser terrestre para obtener modelos 3D de precisión en un mismo sistema de referencia. El procedimiento utilizado incluyó la obtención de varios productos secundarios, como varias geometrías (planos y cilindros) ajustadas desde las nubes de puntos, o planos y secciones obtenidas de los modelos 3D. El análisis geométrico ha incluido distintos aspectos de la geometría: dimensiones, proporciones, orientaciones, planeidad de muros, inclinaciones, etc., y está basado en estos productos. Los resultados obtenidos sugieren y confirman ciertas hipótesis acerca de los aspectos constructivos de estos hipogeos basados en una gran cantidad de datos, incluyendo la determinación de un canon proporcional utilizado por los antiguos egipcios para planificar y ejecutar los trabajos de excavación de cada estructura funeraria. La aplicación de esta metodología ha demostrado que este tipo de análisis es viable para detectar algunos aspectos importantes de estas estructuras y de los procedimientos constructivos llevados a cabo hace casi cuatro milenios. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Virtual Archaeology Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Archaeology es_ES
dc.subject 3D model es_ES
dc.subject Photogrammetry es_ES
dc.subject Terrestrial laser scanning es_ES
dc.subject Burial structures es_ES
dc.subject Arqueología es_ES
dc.subject Estructuras funerarias es_ES
dc.subject Modelo 3D es_ES
dc.subject Fotogrametría es_ES
dc.subject Láser escáner terrestre es_ES
dc.title Geometrical study of Middle Kingdom funerary complexes in Qubbet el-Hawa (Aswan, Egypt) based on 3D models es_ES
dc.title.alternative Estudio geométrico de complejos funerarios del Reino Medio en Qubbet el-Hawa (Asuán, Egipto) basado en modelos 3D es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/var.2023.18418
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mozas-Calvache, AT.; Pérez-García, JL.; Gómez-López, JM. (2023). Geometrical study of Middle Kingdom funerary complexes in Qubbet el-Hawa (Aswan, Egypt) based on 3D models. Virtual Archaeology Review. 14(28):1-18. https://doi.org/10.4995/var.2023.18418 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/var.2023.18418 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 28 es_ES
dc.identifier.eissn 1989-9947
dc.relation.pasarela OJS\18418 es_ES
dc.description.references Ahmon, J. (2004). The application of short-range 3D laser scanning for archaeological replica production: the Egyptian tomb of Seti I. The Photogrammetric Record, 19(106), 111-127. https://doi.org/10.1111/j.1477-9730.2004.00034.x es_ES
dc.description.references Alshawabkeh, Y., & Haala, N. (2004). Integration of digital photogrammetry and laser scanning for heritage documentation. The International Archives of Photogrammetry and Remote Sensing, 35, B5. es_ES
dc.description.references Angelini, A., Vittozzi, G. C., & Baldi, M., (2016). The high official Harkhuf and the inscriptions of his tomb in Aswan (Egypt). An integrated methodological approach. Acta IMEKO, 5(2), 71-79. https://doi.org/10.21014/acta_imeko.v5i2.349 es_ES
dc.description.references Barazzetti, L., Previtali, M., & Roncoroni, F. (2017a). 3D Modelling with the Samsung Gear 360. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W3, 85-90. https://doi.org/10.5194/isprs-archives-XLII-2-W3-85-2017 es_ES
dc.description.references Barazzetti, L., Previtali, M., & Roncoroni, F. (2017b). Fisheye lenses for 3D modeling: evaluations and considerations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 79-84. https://doi.org/10.5194/isprs-archives-XLII-2-W3-79-2017 es_ES
dc.description.references Barazzetti, L., Previtali, M., & Roncoroni, F. (2022) 3D modeling with 5K 360° videos. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022, 65-71. https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-65-2022 es_ES
dc.description.references Beraldin, J. A., Blais, F., Boulanger, P., Cournoyer, L., Domey, J., El-Hakim, S. F., Godin, G., Rioux, M., & Taylor, J. (2000). Real world modelling through high resolution digital 3D imaging of objects and structures. ISPRS Journal of Photogrammetry and Remote Sensing, 55(4), 230-250. https://doi.org/10.1016/S0924-2716(00)00013-7 es_ES
dc.description.references Blockley, P., & Morandi, S. (2015). The recording of two late Roman towers, Archaeological Museum, Milan 3D documentation and study using image-based modelling. In Digital Heritage 2015, IEEE (pp. 103-106). Granada, Spain. https://doi.org/10.1109/DigitalHeritage.2015.7413845 es_ES
dc.description.references Brutto, M. L., & Meli, P. (2012). Computer vision tools for 3D modelling in archaeology. International Journal of Heritage in the Digital Era, 1, 1-6. https://doi.org/10.1260/2047-4970.1.0.1 es_ES
dc.description.references Campana, S. (2017). Drones in Archaeology. State‐of‐the‐art and Future Perspectives. Archaeological Prospection, 24(4), 275-296. https://doi.org/10.1002/arp.1569 es_ES
dc.description.references Cardenal, J., Mata, E., Castro, P., Delgado, J., Hernandez, M. A., Pérez, J. L., Ramos, M., & Torres, M. (2004). Evaluation of a digital non metric camera (Canon D30) for the photogrammetric recording of historical buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXV-B5, 564-569. es_ES
dc.description.references Celikoyan, T. M., Altan, M. O., Kemper, G., & Toz, G. (2003). Calibrating and using an Olympus camera for balloon photogrammetry. In Proc. XIXth International Symposium-CIPA 2003 (pp. 380-382). Antalya, Turkey. es_ES
dc.description.references Chandler, J. H., Fryer, J. G., & Jack, A. (2005). Metric capabilities of low‐cost digital cameras for close range surface measurement. The Photogrammetric Record, 20(109), 12-26. https://doi.org/10.1111/j.1477-9730.2005.00302.x es_ES
dc.description.references CIPA Heritage Documentation (2017). The photogrammetric capture. The '3x3' rules. Retrieved October 17, 2022, from https://www.cipaheritagedocumentation.org/ es_ES
dc.description.references Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013 es_ES
dc.description.references Colonnese, F., Carpiceci, M., & Inglese, C. (2016). Conveying Cappadocia. A new representation model for rock-cave architecture by contour lines and chromatic codes. Virtual Archaeology Review, 7(14), 13-19. https://doi.org/10.4995/var.2016.5382 es_ES
dc.description.references Covas, J., Ferreira, V., & Mateus, L., (2015). 3D reconstruction with fisheye images strategies to survey complex heritage buildings. In Digital Heritage 2015, IEEE (pp. 123-126). Granada, Spain. https://doi.org/10.1109/DigitalHeritage.2015.7413850 es_ES
dc.description.references Echeverría, E., Celis, F., Morales, A., & da Casa, F. (2019). The Tomb of Ipi: 3D Documentation in a Middle Kingdom Theban Necropolis (Egypt, 2000 BCE). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 319-324. https://doi.org/10.5194/isprs-archives-XLII-2-W9-319-2019 es_ES
dc.description.references Edel, E. (2008). Die Felsgräbernekropole der Qubbet el Hawa bei Assuan: I. Abteilung (Band 1-3). Architektur, Darstellungen, Texte, archäologischer Befund und Funde der Gräber QH 24-QH 209. In K. J. Seyfried & G. Vieler (Eds.), Die Felsgräbernekropole der Qubbet el Hawa bei Assuan. Paderborn, Germany: Ferdinand Schöningh. https://doi.org/10.30965/9783657763436 es_ES
dc.description.references Farella, E. M. (2016). 3D mapping of underground environments with a hand-held laser scanner. Bollettino della società italiana di fotogrammetria e topografia, 2, 1-10. es_ES
dc.description.references Fiorillo, F., Limongiello, M., & Fernández-Palacios, B. J. (2016). Testing GoPro for 3D model reconstruction in narrow spaces. Acta IMEKO, 5(2), 64-70. https://doi.org/10.21014/acta_imeko.v5i2.372 es_ES
dc.description.references Furukawa, Y., & Hernández, C. (2015). Multi-view stereo: A tutorial. Foundations and Trends® in Computer Graphics and Vision, 9(1-2), 1-148. https://doi.org/10.1561/0600000052 es_ES
dc.description.references Gardón-Ramos, V. (2021). The Geometrical Pattern in the Royal Architecture of Ancient Egypt during the Middle Kingdom. Historiae, (18), 45-70. es_ES
dc.description.references Georgopoulos, A., Karras, G. E., & Makris, G. N. (2003). The photogrammetric survey of a prehistoric site undergoing removal. The Photogrammetric Record, 16(93), 443-456. https://doi.org/10.1111/0031-868X.00135 es_ES
dc.description.references Grussenmeyer, P., Landes, T., Voegtle, T., & Ringle, K. (2008). Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII/B5, 213-218. es_ES
dc.description.references Guarnieri, A., Remondino, F., & Vettore, A. (2006). Digital photogrammetry and TLS data fusion applied to Cultural Heritage 3D modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (Part 5). es_ES
dc.description.references Harrell, J. A. (2008). Tools used in ancient Egyptian construction. Encyclopedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2nd ed.), (pp. 2158-2166). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-4425-0_9118 es_ES
dc.description.references Hassani, F., Moser, M., Rampold, R., & Wu, C. (2015). Documentation of cultural heritage; techniques, potentials, and constraints. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 207. https://doi.org/10.5194/isprsarchives-XL-5-W7-207-2015 es_ES
dc.description.references Joyanes-Diaz, M., Martinez-De Dios, J., Mozas-Calvache, A., Ruiz-Jaramillo, J., Muñoz-Gonzalez, C., & Jimenez-Serrano, A. (2022). Solar geometry and the organization of the annual cycle through architecture and the funerary landscape in Qubbet el Hawa. Mediterranean Archaeology and Archaeometry, 22(2), 209-235. https://www.doi.org/10.5281/zenodo.6815469 es_ES
dc.description.references Kadobayashi, R., Kochi, N., Otani, H., & Furukawa, R. (2004). Comparison and evaluation of laser scanning and photogrammetry and their combined use for digital recording of cultural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(5), 401-406. es_ES
dc.description.references Koenderink, J. J., & Van Doorn, A. J. (1991). Affine structure from motion. Journal of the Optical Society of America A, 8(2), 377-385. https://doi.org/10.1364/JOSAA.8.000377 es_ES
dc.description.references Lambers, K., & Remondino, F. (2007). Optical 3D measurement techniques in archaeology: recent developments and applications. In Proc. of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (pp. 27-35). Berlin, Germany. es_ES
dc.description.references Lima de, R., & Vergauwen, M. (2018). From TLS recoding to VR environment for documentation of the Governor's Tombs in Dayr al-Barsha, Egypt. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 293-298). Munich, Germany. es_ES
dc.description.references Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 es_ES
dc.description.references Mandelli, A., Gobeil, C., Greco, C., & Rossi, C. (2021). Digital twin and 3d documentation of a Theban tomb at Deir Al-Medina (Egypt) using a multi-lenses photogrammetric approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2021, 591-597. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-591-2021 es_ES
dc.description.references Martínez, S., Ortiz, J., Gil, M. L., & Rego, M. T. (2013). Recording complex structures using close range photogrammetry: The cathedral of Santiago de Compostela. The Photogrammetric Record, 28(144), 375-395. https://doi.org/10.1111/phor.12040 es_ES
dc.description.references Martínez Hermoso, J. A., Martínez Hermoso, F., de Paula Montes Tubío, F., & Jiménez Serrano, A. (2015). Geometry and proportions in the funeral chapel of Sarenput II. Nexus Network Journal, 17(1), 287-309. https://doi.org/10.1007/s00004-014-0218-4 es_ES
dc.description.references Martínez-Hermoso, J. A., Mellado-García, I., Martínez de Dios, J. L., Martínez-Hermoso, F., Espejo-Jiménez, A., & Jiménez-Serrano, A. (2018). The construction of tomb group QH31 (Sarenput II) through QH33. Part I: The exterior of the funerary complexes. The Journal of Ancient Egyptian Architecture, 3, 25-44. es_ES
dc.description.references Mozas-Calvache, A. T., Pérez-García, J. L., Cardernal-Escarcena, F. J., Delgado, J., & Mata de Castro, E. (2012). Comparison of Low Altitude Photogrammetric Methods for Obtaining Dems and Orthoimages of Archaeological Sites. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B5, 577-581. https://doi.org/10.5194/isprsarchives-XXXIX-B5-577-2012 es_ES
dc.description.references Mozas-Calvache, A. T., Pérez-García, J. L., Gómez-López, J. M., de Dios, J. M., & Jiménez-Serrano, A. (2020). 3D models of the QH31, QH32 and QH33 tombs in Qubbet el Hawa (Aswan, Egypt). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1427-1434. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1427-2020 es_ES
dc.description.references Nabil, M., Betrò, M., & Metwallya, M. N. (2013). 3D reconstruction of ancient Egyptian rockcut tombs: the case of Midan 05. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W2, 443-447. https://doi.org/10.5194/isprsarchives-XL-5-W2-443-2013 es_ES
dc.description.references Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1-15. https://doi.org/10.1007/s12518-013-0120-x es_ES
dc.description.references Ogleby, C. L., Papadaki, H., Robson, S., & Shortis, M. R. (1999). Comparative camera calibrations of some "off the shelf" digital cameras suited to archaeological purposes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXII-5/W11, 69-75. es_ES
dc.description.references Ortiz, J., Gil, M. L., Martínez, S., Rego, T., & Meijide, G. (2013). Three‐dimensional Modelling of Archaeological Sites Using Close‐range Automatic Correlation Photogrammetry and Low‐altitude Imagery. Archaeological Prospection, 20(3), 205-217. https://doi.org/10.1002/arp.1457 es_ES
dc.description.references Pérez‐García, J. L., Mozas‐Calvache, A. T., Gómez‐López, J. M., & Jiménez‐Serrano, A. (2018). Three‐dimensional modelling of large archaeological sites using images obtained from masts. Application to Qubbet el‐Hawa site (Aswan, Egypt). Archaeological Prospection, 26(2), 121-135. https://doi.org/10.1002/arp.1728 es_ES
dc.description.references Pérez‐García, J. L., Mozas‐Calvache, A. T., Barba-Colmenero, V., & Jiménez‐Serrano, A. (2019). Photogrammetric studies of inaccessible sites in archaeology: Case study of burial chambers in Qubbet el-Hawa (Aswan, Egypt). Journal of Archaeological Science, 102, 1-10. https://doi.org/10.1016/j.jas.2018.12.008 es_ES
dc.description.references Perfetti, L., Polari, C., & Fassi, F. (2017). Fisheye Photogrammetry: Tests and Methodologies for the Survey of Narrow Spaces. International Archives of Photogrammetry and Remote Sensing, XLII-2/W3, 573-580. https://doi.org/10.5194/isprs-archives-XLII-2-W3-573-2017 es_ES
dc.description.references Perfetti, L., & Fassi, F. (2022). Handheld fisheye multicamera system: surveying meandering architectonic spaces in open-loop mode - accuracy assessment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022, 435-442. https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-435-2022 es_ES
dc.description.references Remondino, F., Rizzi, A., Jimenez, B., Agugiaro, G., Baratti, G., & De Amicis, R. (2011). The Etruscans in 3D: From space to underground. Geoinformatics, 6, 283-290. https://doi.org/10.14311/gi.6.35 es_ES
dc.description.references Rossi, C. (2001). Dimensions and slope in the nineteenth and twentieth dynasty royal tombs. The Journal of Egyptian Archaeology, 87(1), 73-80. https://doi.org/10.1177/030751330108700107 es_ES
dc.description.references Sánchez-León, J. C., & Jiménez-Serrano, A. (2015). Sattjeni: Daughter, Wife and Mother of the Governors of Elephantine during the End of the Twelfth Dynasty. Zeitschrift für Ägyptische Sprache und Altertumskunde, 142(2), 154-166. https://doi.org/10.1515/zaes-2015-0013 es_ES
dc.description.references Sánchez-León, J. C., & Jiménez-Serrano, A. (2016). Keeping provincial power in the lineage during the Twelfth Dynasty: The case of Khema, governor of Elephantine. Studien zur Altägyptischen Kultur, 307-314. es_ES
dc.description.references Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1-3), 7-42. https://doi.org/10.1109/SMBV.2001.988771 es_ES
dc.description.references Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 519-528). New York, USA. https://doi.org/10.1109/CVPR.2006.19 es_ES
dc.description.references Shaltout, M., & Belmonte, J. A. (2005). On the orientation of ancient Egyptian temples: (1) Upper Egypt and Lower Nubia. Journal for the History of Astronomy, 36(3), 273-298. https://doi.org/10.1177/002182860503600302 es_ES
dc.description.references Szeliski, R. (2011). Computer Vision: Algorithms and Applications. London: Springer. https://doi.org/10.1007/978-1-84882-935-0 es_ES
dc.description.references Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society of London B, 203, 405-426. https://doi.org/10.1098/rspb.1979.0006 es_ES
dc.description.references Waldhäusl, P., & Ogleby, C. L. (1994). 3 x 3 rules for simple photogrammetric documentation of architecture. The International Archives of Photogrammetry and Remote Sensing, 30-5, 426-429. es_ES
dc.description.references Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021 es_ES
dc.description.references Zlot, R., & Bosse, M. (2014). Three-dimensional mobile mapping of caves. Journal of Cave & Karst Studies, 76(3), 191-206. https://doi.org/10.4311/2012EX0287 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem