- -

Multi-criteria risk classification to enhance complex supply networks performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-criteria risk classification to enhance complex supply networks performance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carpitella, Silvia es_ES
dc.contributor.author Mzougui, Ilyas es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.date.accessioned 2023-02-21T19:02:07Z
dc.date.available 2023-02-21T19:02:07Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 0030-3887 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191983
dc.description.abstract [EN] Management of complex supply networks is a fundamental business topic today. Especially in the presence of many and diverse stakeholders, identifying and assessing those risks having a potential negative impact on the performance of supply processes is of utmost importance and, as a result, implementing focused risk management actions is a current lively field of research. The possibility of supporting Supply Chain Risks Management (SCRM) is herein explored from a Multi-Criteria Decision-Making (MCDM)-based perspective. The sorting method ELimination Et Choix Traduisant la REalite (ELECTRE) TRI is proposed as a structural procedure to classify Supply Chain Risks (SCRs) into proper risk classes expressing priority of intervention so as to ease the implementation of prevention and protection measures. This approach is intended to offer structured management insights by means of an immediate identification of the most highly critical risks in a wide set of previously identified SCRs. A real-world case study in the field of the automotive industry is implemented to show the applicability and usefulness of the approach. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof OPSEARCH es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Supply chain risk es_ES
dc.subject Supply chain management es_ES
dc.subject Multi-criteria decision-making es_ES
dc.subject ELECTRE TRI es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Multi-criteria risk classification to enhance complex supply networks performance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12597-021-00568-8 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Carpitella, S.; Mzougui, I.; Izquierdo Sebastián, J. (2022). Multi-criteria risk classification to enhance complex supply networks performance. OPSEARCH. 59(3):769-785. https://doi.org/10.1007/s12597-021-00568-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12597-021-00568-8 es_ES
dc.description.upvformatpinicio 769 es_ES
dc.description.upvformatpfin 785 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\448775 es_ES
dc.description.references Abdel-Basset, M., Gunasekaran, M., Mohamed, M., Chilamkurti, N.: A framework for risk assessment, management and evaluation: economic tool for quantifying risks in supply chain. Future Generation Comput. Syst. 90, 489–502 (2019) es_ES
dc.description.references Akram, M., Ilyas, F., Garg, H.: Multi-criteria group decision making based on electre i method in pythagorean fuzzy information. Soft Comput. 24(5), 3425–3453 (2020) es_ES
dc.description.references Altay, N., Gunasekaran, A., Dubey, R., Childe, S.J.: Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture within the humanitarian setting: a dynamic capability view. Prod. Plan. Control 29(14), 1158–1174 (2018) es_ES
dc.description.references Awoyemi, B.S., Alfa, A.S., Maharaj, B.T.: Network restoration for next-generation communication and computing networks. J. Comput. Netw. Commun. 2018 (2018) es_ES
dc.description.references Bharsakade, R.S., Acharya, P., Ganapathy, L., Tiwari, M.K.: A lean approach to healthcare management using multi criteria decision making. Opsearch, 1–26 (2021) es_ES
dc.description.references Bhutta, K.S., Huq, F.: Supplier selection problem: a comparison of the total cost of ownership and analytic hierarchy process approaches. Supp. Chain Manage. Int. J. (2002) es_ES
dc.description.references Carpitella, S., Ocaña-Levario, S.J., Benítez, J., Certa, A., Izquierdo, J.: A hybrid multi-criteria approach to gpr image mining applied to water supply system maintenance. J. Appl. Geophys. 159, 754–764 (2018) es_ES
dc.description.references Carpitella, S., Herrera, M., Certa, A., Izquierdo, J.: Updating the ospf routing protocol for communication networks by optimal decision-making over the k-shortest path algorithm. Modell. Eng. Human Behav. 2019, 118 (2019) es_ES
dc.description.references Carpitella, S., Certa, A., Izquierdo, J., La Cascia, M.: Multi-criteria decision-making approach for modular enterprise resource planning sorting problems. J. Multi-Criteria Decis. Anal. (2021) (in press) es_ES
dc.description.references Certa, A., Carpitella, S., Enea, M., Micale, R.: A multi criteria decision making approach to support the risk management: a case study. In: Proceedings of the 21th Summer School “Francesco Turco”, Naples, Italy, September, pp. 13–15 (2016) es_ES
dc.description.references Chand, M., Raj, T., Shankar, R., Agarwal, A.: Select the best supply chain by risk analysis for indian industries environment using mcdm approaches. Int. J. Benchmark. (2017) es_ES
dc.description.references Chang, K.-H., Cheng, C.-H.: Evaluating the risk of failure using the fuzzy owa and dematel method. J. Intell. Manufact. 22(2), 113–129 (2011) es_ES
dc.description.references Chopra, S., Meindl, P., Kalra, D.V.: Supply Chain Management: Strategy, Planning, and Operation, vol. 232. Pearson, Boston, MA (2013) es_ES
dc.description.references Christopher, M., Mena, C., Khan, O., Yurt, O.: Approaches to managing global sourcing risk. Supp. Chain Manage. Int. J. (2011) es_ES
dc.description.references Chu, C.-Y., Park, K., Kremer, G.E.: A global supply chain risk management framework: an application of text-mining to identify region-specific supply chain risks. Adv. Eng. Inform. 45, 101053 (2020) es_ES
dc.description.references Committee, I.T., et al.: Analysis techniques for system reliability-procedure for failure mode and effects analysis (fmea). IEC 60812 (2006) es_ES
dc.description.references Creazza, A., Colicchia, C., Spiezia, S., Dallari, F.: Who cares? supply chain managers’ perceptions regarding cyber supply chain risk management in the digital transformation era. Supply Chain Manage. Int. J. (2021) es_ES
dc.description.references Curkovic, S., Scannell, T., Wagner, B.: Using fmea for supply chain risk management. Modern Manage. Sci. Eng. 1(2), 251–265 (2013) es_ES
dc.description.references Fan, Y., Stevenson, M.: A review of supply chain risk management: definition, theory, and research agenda. Int. J. Phys. Distrib. Logist. Manage. (2018) es_ES
dc.description.references Garvey, M.D., Carnovale, S.: The rippled newsvendor: a new inventory framework for modelling supply chain risk severity in the presence of risk propagation. Int. J. Prod. Econ. 107752 (2020) es_ES
dc.description.references Gaudenzi, B., Borghesi, A.: Managing risks in the supply chain using the ahp method. Int. J. Logist. Manage. (2006) es_ES
dc.description.references Ghadge, A., Dani, S., Kalawsky, R.: Supply chain risk management: present and future scope. Int. J. logist. Manage. (2012) es_ES
dc.description.references Ghasimi, S.A., Ramli, R., Saibani, N.: A genetic algorithm for optimizing defective goods supply chain costs using jit logistics and each-cycle lengths. Appl. Math. Modell. 38(4), 1534–1547 (2014) es_ES
dc.description.references Giannakis, M., Papadopoulos, T.: Supply chain sustainability: a risk management approach. Int. J. Prod. Econ. 171, 455–470 (2016) es_ES
dc.description.references Gonçalves, A.T.P., Araújo, M.V.P.d., Mól, A.L.R., Rocha, F.A.F.d.: Application of the electre tri method for supplier classification in supply chains. Pesquisa Operacional 41 (2021) es_ES
dc.description.references Govindan, K., Khodaverdi, R., Vafadarnikjoo, A.: Intuitionistic fuzzy based dematel method for developing green practices and performances in a green supply chain. Exp. Syst. Appl. 42(20), 7207–7220 (2015) es_ES
dc.description.references Habib, K., Sprecher, B., Young, S.B.: Covid-19 impacts on metal supply: how does 2020 differ from previous supply chain disruptions? Resour. Conserv. Recycling 165, 105229 (2020) es_ES
dc.description.references Haren, P., Simchi-Levi, D.: How coronavirus could impact the global supply chain by mid-march. Harvard Bus. Rev. 28 (2020) es_ES
dc.description.references Hegde, S., Koolagudi, S.G., Bhattacharya, S.: Path restoration in source routed software defined networks. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 720–725. IEEE (2017) es_ES
dc.description.references Heidari, S.S., Khanbabaei, M., Sabzehparvar, M.: A model for supply chain risk management in the automotive industry using fuzzy analytic hierarchy process and fuzzy topsis. Benchmark. Int. J. (2018) es_ES
dc.description.references Ho, W., Zheng, T., Yildiz, H., Talluri, S.: Supply chain risk management: a literature review. Int. J. Prod. Res. 53(16), 5031–5069 (2015) es_ES
dc.description.references Jiang, B., Baker, R.C., Frazier, G.V.: An analysis of job dissatisfaction and turnover to reduce global supply chain risk: evidence from china. J. Oper. Manage. 27(2), 169–184 (2009) es_ES
dc.description.references Junaid, M., Xue, Y., Syed, M.W., Li, J.Z., Ziaullah, M.: A neutrosophic ahp and topsis framework for supply chain risk assessment in automotive industry of pakistan. Sustainability 12(1), 154 (2020) es_ES
dc.description.references Karmaker, C.L., Ahmed, T., Ahmed, S., Ali, S.M., Moktadir, M.A., Kabir, G.: Improving supply chain sustainability in the context of covid-19 pandemic in an emerging economy: exploring drivers using an integrated model. Sustain. Prod. Consump. (2020) es_ES
dc.description.references Kim, S.C., Shin, K.S.: Negotiation model for optimal replenishment planning considering defects under the vmi and jit environment. Asian J. Ship. Logisit. 35(3), 147–153 (2019) es_ES
dc.description.references Kuipers, F.A.: An overview of algorithms for network survivability. Int. Scholar. Res. Notices 2012 (2012) es_ES
dc.description.references Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, P., Bansal, R.: A review of multi criteria decision making (mcdm) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 69, 596–609 (2017a) es_ES
dc.description.references Kumar, D., Garg, C.P.: Evaluating sustainable supply chain indicators using fuzzy ahp. Benchmark. Int. J. (2017) es_ES
dc.description.references Kumar, P., Singh, R.K., Vaish, A.: Suppliers’ green performance evaluation using fuzzy extended electre approach. Clean Technol. Environ. Policy 19(3), 809–821 (2017b) es_ES
dc.description.references Kumar, V., Vrat, P., Shankar, R.: Prioritization of strategies to overcome the barriers in industry 4.0: a hybrid mcdm approach. Opsearch, 1–40 (2021) es_ES
dc.description.references Lau, H., Tsang, Y.P., Nakandala, D., Lee, C.K.: Risk quantification in cold chain management: a federated learning-enabled multi-criteria decision-making methodology. Indus. Manage. Data Syst. (2021) es_ES
dc.description.references Levner, E., Ptuskin, A.: An entropy-based approach to identifying vulnerable components in a supply chain. Int. J. Prod. Res. 53(22), 6888–6902 (2015) es_ES
dc.description.references Lian, J., Zhang, Y., Li, C.J.: An efficient k-shortest paths based routing algorithm. Adv. Mater. Res. 532, 1775–1779 (2012) (Trans Tech Publ) es_ES
dc.description.references Liu, C.-L., Lee, M.-Y.: Integration, supply chain resilience, and service performance in third-party logistics providers. Int. J. Logist. Manage. (2018) es_ES
dc.description.references Liu, Z., Ming, X.: A methodological framework with rough-entropy-electre tri to classify failure modes for co-implementation of smart pss. Adv. Eng. Inform. 42, 100968 (2019) es_ES
dc.description.references Louis, M., Pagell, M.: Categorizing supply chain risks: review, integrated typology and future research. In: Revisiting Supply Chain Risk, pp 329–366. Springer (2019) es_ES
dc.description.references Mentzer, J.T., DeWitt, W., Keebler, J.S., Min, S., Nix, N.W., Smith, C.D., Zacharia, Z.G.: Defining supply chain management. J. Bus. Logist. 22(2), 1–25 (2001) es_ES
dc.description.references Merad, M., Verdel, T., Roy, B., Kouniali, S.: Use of multi-criteria decision-aids for risk zoning and management of large area subjected to mining-induced hazards. Tunnelling Underground Space Technol. 19(2), 125–138 (2004) es_ES
dc.description.references Merzifonluoglu, Y.: Impact of risk aversion and backup supplier on sourcing decisions of a firm. Int. J. Prod. Res. 53(22), 6937–6961 (2015) es_ES
dc.description.references Mogale, D., Kumar, S.K., Tiwari, M.K.: Green food supply chain design considering risk and post-harvest losses: a case study. Ann. Oper. Res. 295, 257–284 (2020) es_ES
dc.description.references Moktadir, M.A., Ali, S.M., Mangla, S.K., Sharmy, T.A., Luthra, S., Mishra, N., Garza-Reyes, J.A.: Decision modeling of risks in pharmaceutical supply chains. Indus. Manage. Data Syst. (2018) es_ES
dc.description.references Moktadir, M.A., Dwivedi, A., Khan, N.S., Paul, S.K., Khan, S.A., Ahmed, S., Sultana, R.: Analysis of risk factors in sustainable supply chain management in an emerging economy of leather industry. J. Cleaner Prod. 124641 (2020) es_ES
dc.description.references Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented implementation of the electre-tri method integrating preference elicitation support. Comput. Oper. Res. 27(7–8), 757–777 (2000) es_ES
dc.description.references Muhammad, M.N., Cavus, N.: Fuzzy dematel method for identifying lms evaluation criteria. Procedia Comput. Sci. 120, 742–749 (2017) es_ES
dc.description.references Mulliner, E., Malys, N., Maliene, V.: Comparative analysis of mcdm methods for the assessment of sustainable housing affordability. Omega 59, 146–156 (2016) es_ES
dc.description.references Munir, M., Jajja, M.S.S., Chatha, K.A., Farooq, S.: Supply chain risk management and operational performance: the enabling role of supply chain integration. Int. J. Prod. Econ. 227, 107667 (2020) es_ES
dc.description.references Mzougui, I., Carpitella, S., Certa, A., Felsoufi, Z.E., Izquierdo, J.: Assessing supply chain risks in the automotive industry through a modified mcdm-based fmeca. Processes 8(5), 579 (2020) es_ES
dc.description.references Neiger, D., Rotaru, K., Churilov, L.: Supply chain risk identification with value-focused process engineering. J. Oper. Manage. 27(2), 154–168 (2009) es_ES
dc.description.references Norrman, A., Jansson, U.: Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. Int. J. Phys. Distrib. Logist. Manage. (2004) es_ES
dc.description.references Radivojević, G., Gajović, V.: Supply chain risk modeling by ahp and fuzzy ahp methods. J. Risk Res. 17(3), 337–352 (2014) es_ES
dc.description.references Raihan, A.S., Ali, S.M., Roy, S., Das, M., Kabir, G., Paul, S.K.: Integrated model for soft drink industry supply chain risk assessment: implications for sustainability in emerging economies. Int. J. Fuzzy Syst. 1–22 (2021) es_ES
dc.description.references Rezaei, S., Ghalehkhondabi, I., Rafiee, M., Zanganeh, S.N., et al.: Supplier selection and order allocation in clsc configuration with various supply strategies under disruption risk. Opsearch 57(3), 908–934 (2020) es_ES
dc.description.references Rocha, C., Dias, L.C.: An algorithm for ordinal sorting based on electre with categories defined by examples. J. Global Optim. 42(2), 255–277 (2008) es_ES
dc.description.references Rostamzadeh, R., Ghorabaee, M.K., Govindan, K., Esmaeili, A., Nobar, H.B.K.: Evaluation of sustainable supply chain risk management using an integrated fuzzy topsis-critic approach. J. Cleaner Prod. 175, 651–669 (2018) es_ES
dc.description.references Sahu, N.K., Sahu, A.K., Sahu, A.K.: Appraisement and benchmarking of third-party logistic service provider by exploration of risk-based approach. Cogent Bus. Manage. 2(1), 1121637 (2015) es_ES
dc.description.references Sahu, N.K., Sahu, A.K., Sahu, A.K.: Fuzzy-ahp: a boon in 3pl decision making process. In: Theoretical and practical advancements for fuzzy system integration, pp. 97–125. IGI Global (2017) es_ES
dc.description.references Samvedi, A., Jain, V., Chan, F.T.: Quantifying risks in a supply chain through integration of fuzzy ahp and fuzzy topsis. Int. J. Prod. Res. 51(8), 2433–2442 (2013) es_ES
dc.description.references Schoenherr, T., Tummala, V.R., Harrison, T.P.: Assessing supply chain risks with the analytic hierarchy process: providing decision support for the offshoring decision by a us manufacturing company. J. Purchas. Supp. Manage. 14(2), 100–111 (2008) es_ES
dc.description.references Smialek, J., Tankersley, J.: Fed makes emergency rate cut, but markets continue tumbling. New York Times (2020) es_ES
dc.description.references Sodhi, M.S., Son, B.-G., Tang, C.S.: Researchers’ perspectives on supply chain risk management. Prod. Oper. Manage. 21(1), 1–13 (2012) es_ES
dc.description.references Tang, C., Tomlin, B.: The power of flexibility for mitigating supply chain risks. Int. J. Prod. Econ. 116(1), 12–27 (2008) es_ES
dc.description.references Thun, J.-H., Hoenig, D.: An empirical analysis of supply chain risk management in the german automotive industry. Int. J. Prod. Econ. 131(1), 242–249 (2011) es_ES
dc.description.references Trkman, P., de Oliveira, M.P.V., McCormack, K.: Value-oriented supply chain risk management: you get what you expect. Indus. Manage. Data Syst. (2016) es_ES
dc.description.references Uddin, S., Ali, S., Kabir, G., Suhi, S., Enayet, R., Haque, T.: An ahp-electre framework to evaluate barriers to green supply chain management in the leather industry. Int. J. Sustain. Dev. World Ecol. 26(8), 732–751 (2019) es_ES
dc.description.references Vanalle, R.M., Lucato, Ganga, Filho, W.G., Alves, A.: Risk management in the automotive supply chain: an exploratory study in brazil. Int. J. Prod. Res. 58(3), 783–799 (2020) es_ES
dc.description.references Vargas, L., De Felice, F., Petrillo, A.: Editorial journal of multicriteria decision analysis special issue on “industrial and manufacturing engineering: theory and application using ahp/anp.” J. Multi Criteria Decis. Anal. 24(5–6), 201–202 (2017) es_ES
dc.description.references Wang, H., Gu, T., Jin, M., Zhao, R., Wang, G.: The complexity measurement and evolution analysis of supply chain network under disruption risks. Chaos Solit. Fract. 116, 72–78 (2018) es_ES
dc.description.references Wilding, R., Wagner, B., Colicchia, C., Strozzi, F.: Supply chain risk management: a new methodology for a systematic literature review. Supp. Chain Manage. Int. J. (2012) es_ES
dc.description.references Xie, C., Anumba, C.J., Lee, T.-R., Tummala, R., Schoenherr, T.: Assessing and managing risks using the supply chain risk management process (scrmp). Supp. Chain Manage. Int. J. (2011) es_ES
dc.description.references Yang, J., Xie, H., Yu, G., Liu, M.: Achieving a just-in-time supply chain: the role of supply chain intelligence. Int. J. Prod. Econ. 231, 107878 (2021) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem