Mostrar el registro sencillo del ítem
dc.contributor.author | Burgos-Simon, Clara | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Villafuerte, L. | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2023-02-24T19:01:19Z | |
dc.date.available | 2023-02-24T19:01:19Z | |
dc.date.issued | 2022-04-01 | es_ES |
dc.identifier.issn | 0096-3003 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192069 | |
dc.description.abstract | [EN] This paper deals with random fractional differential equations of the form, (D0+X)-D-C-X-alpha(t) + A(X) over dot (t) + BX(t) = 0 , t > 0 , with initial conditions, X(0) = C-0 and (X) over dot(0) = C-1 , where (D0+X)-D-C-X-alpha(t) stands for the Caputo fractional derivative of X(t). We consider the case that the fractional differentiation order is 1 < alpha < 2 . For the sake of generality, we further assume that C-0, C-1, A and B are random variables satisfying certain mild hypotheses. Then, we first construct a solution stochastic process, via a generalized power series, which is mean square convergent for all t > 0 . Secondly, we provide explicit approximations of the expectation and variance functions of the solution. To complete the random analysis and from this latter key information, we take advantage of the Principle of Maximum Entropy to calculate approximations of the first probability density function of the solution. All the theoretical findings are illustrated via numerical experiments. (c) 2021 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been supported by the grant PID2020-115270GBI00 funded by MCIN/AEI/10.13039/501100011033 and the grant AICO/2021/302 (Generalitat Valenciana). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Random fractional differential equations | es_ES |
dc.subject | Random mean square calculus | es_ES |
dc.subject | Principle of maximum entropy | es_ES |
dc.subject | Mean square Laplace transform | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2021.126846 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Burgos-Simon, C.; Cortés, J.; Villafuerte, L.; Villanueva Micó, RJ. (2022). Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing. Applied Mathematics and Computation. 418:1-17. https://doi.org/10.1016/j.amc.2021.126846 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.amc.2021.126846 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 418 | es_ES |
dc.relation.pasarela | S\451065 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |