- -

Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Burgos-Simon, Clara es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Villafuerte, L. es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2023-02-24T19:01:19Z
dc.date.available 2023-02-24T19:01:19Z
dc.date.issued 2022-04-01 es_ES
dc.identifier.issn 0096-3003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192069
dc.description.abstract [EN] This paper deals with random fractional differential equations of the form, (D0+X)-D-C-X-alpha(t) + A(X) over dot (t) + BX(t) = 0 , t > 0 , with initial conditions, X(0) = C-0 and (X) over dot(0) = C-1 , where (D0+X)-D-C-X-alpha(t) stands for the Caputo fractional derivative of X(t). We consider the case that the fractional differentiation order is 1 < alpha < 2 . For the sake of generality, we further assume that C-0, C-1, A and B are random variables satisfying certain mild hypotheses. Then, we first construct a solution stochastic process, via a generalized power series, which is mean square convergent for all t > 0 . Secondly, we provide explicit approximations of the expectation and variance functions of the solution. To complete the random analysis and from this latter key information, we take advantage of the Principle of Maximum Entropy to calculate approximations of the first probability density function of the solution. All the theoretical findings are illustrated via numerical experiments. (c) 2021 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship This work has been supported by the grant PID2020-115270GBI00 funded by MCIN/AEI/10.13039/501100011033 and the grant AICO/2021/302 (Generalitat Valenciana). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics and Computation es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Random fractional differential equations es_ES
dc.subject Random mean square calculus es_ES
dc.subject Principle of maximum entropy es_ES
dc.subject Mean square Laplace transform es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.amc.2021.126846 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Burgos-Simon, C.; Cortés, J.; Villafuerte, L.; Villanueva Micó, RJ. (2022). Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing. Applied Mathematics and Computation. 418:1-17. https://doi.org/10.1016/j.amc.2021.126846 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.amc.2021.126846 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 418 es_ES
dc.relation.pasarela S\451065 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem