- -

Multiple seasonal STL decomposition with discrete-interval moving seasonalities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiple seasonal STL decomposition with discrete-interval moving seasonalities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trull, Oscar es_ES
dc.contributor.author García-Díaz, J. Carlos es_ES
dc.contributor.author Peiró Signes, Angel es_ES
dc.date.accessioned 2023-03-22T19:00:49Z
dc.date.available 2023-03-22T19:00:49Z
dc.date.issued 2022-11-15 es_ES
dc.identifier.issn 0096-3003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192553
dc.description.abstract [EN] The decomposition of a time series into components is an exceptionally useful tool for understanding the behaviour of the series. The decomposition makes it possible to dis-tinguish the long-term and the short-term behaviour through the trend component and the seasonality component. Among the decomposition methods, the STL (Seasonal Trend decomposition based on Loess) method stands out for its versatility and robustness. This method, however, has one main drawback: it works with a single seasonality, and does not deal with the calendar effect. In this article we present a new decomposition method, based on the STL, which allows the use of different seasonalities while allowing the cal-endar effect and special events to be introduced into the model using discrete-interval moving seasonalities (MSTL-DIMS). To show the improvements obtained, the MSTL-DIMS technique is applied to short-term load forecasting in some electricity systems, and the results are discussed. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics and Computation es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject MSTL es_ES
dc.subject DIMS es_ES
dc.subject Decomposition es_ES
dc.subject Loess es_ES
dc.subject Multiple seasonal es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Multiple seasonal STL decomposition with discrete-interval moving seasonalities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.amc.2022.127398 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Trull, O.; García-Díaz, JC.; Peiró Signes, A. (2022). Multiple seasonal STL decomposition with discrete-interval moving seasonalities. Applied Mathematics and Computation. 433:1-9. https://doi.org/10.1016/j.amc.2022.127398 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.amc.2022.127398 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 433 es_ES
dc.relation.pasarela S\469266 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem