- -

Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Cebrián, Alba es_ES
dc.contributor.author Borràs-Ferrís, Joan es_ES
dc.contributor.author Ordovás-Baines, Juan Pablo es_ES
dc.contributor.author Hermenegildo-Caudevilla, Marta es_ES
dc.contributor.author Climente-Martí, Mónica es_ES
dc.contributor.author Tarazona, Sonia es_ES
dc.contributor.author Vitale, Raffaele es_ES
dc.contributor.author Palací-López, Daniel es_ES
dc.contributor.author Sierra-Sánchez, Jesús Francisco es_ES
dc.contributor.author Saez de la Fuente, Javier es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2023-03-23T19:01:20Z
dc.date.available 2023-03-23T19:01:20Z
dc.date.issued 2022-09-22 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192564
dc.description.abstract [EN] The clinical course of COVID-19 is highly variable. It is therefore essential to predict as early and accurately as possible the severity level of the disease in a COVID-19 patient who is admitted to the hospital. This means identifying the contributing factors of mortality and developing an easy-to-use score that could enable a fast assessment of the mortality risk using only information recorded at the hospitalization. A large database of adult patients with a confirmed diagnosis of COVID-19 (n = 15,628; with 2,846 deceased) admitted to Spanish hospitals between December 2019 and July 2020 was analyzed. By means of multiple machine learning algorithms, we developed models that could accurately predict their mortality. We used the information about classifiers¿ performance metrics and about importance and coherence among the predictors to define a mortality score that can be easily calculated using a minimal number of mortality predictors and yielded accurate estimates of the patient severity status. The optimal predictive model encompassed five predictors (age, oxygen saturation, platelets, lactate dehydrogenase, and creatinine) and yielded a satisfactory classification of survived and deceased patients (area under the curve: 0.8454 with validation set). These five predictors were additionally used to define a mortality score for COVID-19 patients at their hospitalization. This score is not only easy to calculate but also to interpret since it ranges from zero to eight, along with a linear increase in the mortality risk from 0% to 80%. A simple risk score based on five commonly available clinical variables of adult COVID-19 patients admitted to hospital is able to accurately discriminate their mortality probability, and its interpretation is straightforward and useful. es_ES
dc.description.sponsorship The authors acknowledge the support provided by the Spanish Ministry of Science and Innovation (PID2020-119262RB-I00), the Generalitat Valenciana (AICO/2021/111), the UPV Research and Development Support Programme PAID-01-17, and the European Social Fund (ACIF/2018/165). es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0274171 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119262RB-I00/ES/TECNICAS ESTADISTICAS MULTIVARIANTES BASADAS EN VARIABLES LATENTES PARA EL DESARROLLO DE BIOMARCADORES DE IMAGEN PARA LA DIAGNOSIS Y PROGNOSIS DE CANCER DE MAMA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F111//OPTIMIZACIÓN DE PROCESOS EN LA INDUSTRIA 4.0 MEDIANTE TÉCNICAS ESTADÍSTICAS MULTIVARIANTES (INDOPT4.0)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2018%2F165//AYUDA PREDOCTORAL GVA-BORRAS FERRIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-17//Contratos Pre-Doctorales UPV 2017- Subprograma 1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation González-Cebrián, A.; Borràs-Ferrís, J.; Ordovás-Baines, JP.; Hermenegildo-Caudevilla, M.; Climente-Martí, M.; Tarazona, S.; Vitale, R.... (2022). Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients. PLoS ONE. 17(9):1-17. https://doi.org/10.1371/journal.pone.0274171 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0274171 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 36137106 es_ES
dc.identifier.pmcid PMC9499271 es_ES
dc.relation.pasarela S\472094 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem