Mostrar el registro sencillo del ítem
dc.contributor.author | González-Cebrián, Alba | es_ES |
dc.contributor.author | Borràs-Ferrís, Joan | es_ES |
dc.contributor.author | Ordovás-Baines, Juan Pablo | es_ES |
dc.contributor.author | Hermenegildo-Caudevilla, Marta | es_ES |
dc.contributor.author | Climente-Martí, Mónica | es_ES |
dc.contributor.author | Tarazona, Sonia | es_ES |
dc.contributor.author | Vitale, Raffaele | es_ES |
dc.contributor.author | Palací-López, Daniel | es_ES |
dc.contributor.author | Sierra-Sánchez, Jesús Francisco | es_ES |
dc.contributor.author | Saez de la Fuente, Javier | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2023-03-23T19:01:20Z | |
dc.date.available | 2023-03-23T19:01:20Z | |
dc.date.issued | 2022-09-22 | es_ES |
dc.identifier.issn | 1932-6203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192564 | |
dc.description.abstract | [EN] The clinical course of COVID-19 is highly variable. It is therefore essential to predict as early and accurately as possible the severity level of the disease in a COVID-19 patient who is admitted to the hospital. This means identifying the contributing factors of mortality and developing an easy-to-use score that could enable a fast assessment of the mortality risk using only information recorded at the hospitalization. A large database of adult patients with a confirmed diagnosis of COVID-19 (n = 15,628; with 2,846 deceased) admitted to Spanish hospitals between December 2019 and July 2020 was analyzed. By means of multiple machine learning algorithms, we developed models that could accurately predict their mortality. We used the information about classifiers¿ performance metrics and about importance and coherence among the predictors to define a mortality score that can be easily calculated using a minimal number of mortality predictors and yielded accurate estimates of the patient severity status. The optimal predictive model encompassed five predictors (age, oxygen saturation, platelets, lactate dehydrogenase, and creatinine) and yielded a satisfactory classification of survived and deceased patients (area under the curve: 0.8454 with validation set). These five predictors were additionally used to define a mortality score for COVID-19 patients at their hospitalization. This score is not only easy to calculate but also to interpret since it ranges from zero to eight, along with a linear increase in the mortality risk from 0% to 80%. A simple risk score based on five commonly available clinical variables of adult COVID-19 patients admitted to hospital is able to accurately discriminate their mortality probability, and its interpretation is straightforward and useful. | es_ES |
dc.description.sponsorship | The authors acknowledge the support provided by the Spanish Ministry of Science and Innovation (PID2020-119262RB-I00), the Generalitat Valenciana (AICO/2021/111), the UPV Research and Development Support Programme PAID-01-17, and the European Social Fund (ACIF/2018/165). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0274171 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119262RB-I00/ES/TECNICAS ESTADISTICAS MULTIVARIANTES BASADAS EN VARIABLES LATENTES PARA EL DESARROLLO DE BIOMARCADORES DE IMAGEN PARA LA DIAGNOSIS Y PROGNOSIS DE CANCER DE MAMA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F111//OPTIMIZACIÓN DE PROCESOS EN LA INDUSTRIA 4.0 MEDIANTE TÉCNICAS ESTADÍSTICAS MULTIVARIANTES (INDOPT4.0)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2018%2F165//AYUDA PREDOCTORAL GVA-BORRAS FERRIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-17//Contratos Pre-Doctorales UPV 2017- Subprograma 1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | González-Cebrián, A.; Borràs-Ferrís, J.; Ordovás-Baines, JP.; Hermenegildo-Caudevilla, M.; Climente-Martí, M.; Tarazona, S.; Vitale, R.... (2022). Machine-learning-derived predictive score for early estimation of COVID-19 mortality risk in hospitalized patients. PLoS ONE. 17(9):1-17. https://doi.org/10.1371/journal.pone.0274171 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1371/journal.pone.0274171 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 36137106 | es_ES |
dc.identifier.pmcid | PMC9499271 | es_ES |
dc.relation.pasarela | S\472094 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |