- -

Hybrid topologies on the real line

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid topologies on the real line

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Richmond, Tom es_ES
dc.date.accessioned 2023-05-02T06:43:27Z
dc.date.available 2023-05-02T06:43:27Z
dc.date.issued 2023-04-05
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/193024
dc.description.abstract [EN] Given A ⊆ R, the Hattori space H(A) is the topological space (R, τA) where each a ∈ A has a τA-neighborhood base {(a−ε, a+ε) : ε > 0} and each b ∈ R − A has a τA-neighborhood base {[b, b + ε) : ε > 0}. Thus, τA may be viewed as a hybrid of the Euclidean topology and the lowerlimit topology. We investigate properties of Hattori spaces as well as other hybrid topologies on R using various combinations of the discrete, left-ray, lower-limit, upper-limit, and Euclidean topologies. Since each of these topologies is generated by a quasi-metric on R, we investigate hybrid quasi-metrics which generate these hybrid topologies. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Hybrid topology es_ES
dc.subject Hattori topology es_ES
dc.subject Quasi-metric es_ES
dc.title Hybrid topologies on the real line es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18566
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Richmond, T. (2023). Hybrid topologies on the real line. Applied General Topology. 24(1):157-168. https://doi.org/10.4995/agt.2023.18566 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18566 es_ES
dc.description.upvformatpinicio 157 es_ES
dc.description.upvformatpfin 168 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18566 es_ES
dc.description.references A. Bouziad and E. Sukhacheva, On Hattori spaces, Comment. Math. Univ. Carolin. 58, no. 2 (2017), 213-223. https://doi.org/10.14712/1213-7243.2015.199 es_ES
dc.description.references V. A. Chatyrko and Y. Hattori, A poset of topologies on the set of real numbers, Comment. Math. Univ. Carolin. 54, no. 2 (2013), 189-196. es_ES
dc.description.references Y. Hattori, Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science 43 (2010), 13-26. es_ES
dc.description.references D. J. Lutzer, Ordered topological spaces, Surveys in general topology, pp. 247-295, Academic Press, New York-London-Toronto, Ont., 1980. https://doi.org/10.1016/B978-0-12-584960-9.50014-6 es_ES
dc.description.references T. Richmond, General Topology: An Introduction, De Gruyter, Berlin, 2020. https://doi.org/10.1515/9783110686579 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem