Mostrar el registro sencillo del ítem
dc.contributor.author | Richmond, Tom | es_ES |
dc.date.accessioned | 2023-05-02T06:43:27Z | |
dc.date.available | 2023-05-02T06:43:27Z | |
dc.date.issued | 2023-04-05 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/193024 | |
dc.description.abstract | [EN] Given A ⊆ R, the Hattori space H(A) is the topological space (R, τA) where each a ∈ A has a τA-neighborhood base {(a−ε, a+ε) : ε > 0} and each b ∈ R − A has a τA-neighborhood base {[b, b + ε) : ε > 0}. Thus, τA may be viewed as a hybrid of the Euclidean topology and the lowerlimit topology. We investigate properties of Hattori spaces as well as other hybrid topologies on R using various combinations of the discrete, left-ray, lower-limit, upper-limit, and Euclidean topologies. Since each of these topologies is generated by a quasi-metric on R, we investigate hybrid quasi-metrics which generate these hybrid topologies. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Hybrid topology | es_ES |
dc.subject | Hattori topology | es_ES |
dc.subject | Quasi-metric | es_ES |
dc.title | Hybrid topologies on the real line | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.18566 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Richmond, T. (2023). Hybrid topologies on the real line. Applied General Topology. 24(1):157-168. https://doi.org/10.4995/agt.2023.18566 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.18566 | es_ES |
dc.description.upvformatpinicio | 157 | es_ES |
dc.description.upvformatpfin | 168 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\18566 | es_ES |
dc.description.references | A. Bouziad and E. Sukhacheva, On Hattori spaces, Comment. Math. Univ. Carolin. 58, no. 2 (2017), 213-223. https://doi.org/10.14712/1213-7243.2015.199 | es_ES |
dc.description.references | V. A. Chatyrko and Y. Hattori, A poset of topologies on the set of real numbers, Comment. Math. Univ. Carolin. 54, no. 2 (2013), 189-196. | es_ES |
dc.description.references | Y. Hattori, Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science 43 (2010), 13-26. | es_ES |
dc.description.references | D. J. Lutzer, Ordered topological spaces, Surveys in general topology, pp. 247-295, Academic Press, New York-London-Toronto, Ont., 1980. https://doi.org/10.1016/B978-0-12-584960-9.50014-6 | es_ES |
dc.description.references | T. Richmond, General Topology: An Introduction, De Gruyter, Berlin, 2020. https://doi.org/10.1515/9783110686579 | es_ES |