- -

New results regarding the lattice of uniform topologies on C(X)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

New results regarding the lattice of uniform topologies on C(X)

Show full item record

Pichardo-Mendoza, R.; Ríos-Herrejón, A. (2023). New results regarding the lattice of uniform topologies on C(X). Applied General Topology. 24(1):169-185. https://doi.org/10.4995/agt.2023.18738

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193027

Files in this item

Item Metadata

Title: New results regarding the lattice of uniform topologies on C(X)
Author: Pichardo-Mendoza, Roberto Ríos-Herrejón, Alejandro
Issued date:
Abstract:
[EN] For a Tychonoff space X, the lattice UX  was introduced in L. A. Pérez-Morales, G. Delgadillo-Piñón, and R. Pichardo-Mendoza, The lattice of uniform topologies on C(X), Questions and Answers in General Topology  39 ...[+]
Subjects: Lattice of uniform topologies , Tychonoff spaces , Order-isomorphisms , Cardinal characteristics
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.18738
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2023.18738
Project ID:
info:eu-repo/grantAgreement/CONACyT// 814282
Thanks:
The research of the second author was supported by CONACyT grant no. 814282.
Type: Artículo

References

R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.

A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, II, Indag. Math. 71, no. 1 (1970), 18-30. https://doi.org/10.1016/1385-7258(69)90022-5

R. Hodel, Cardinal Functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan, eds., Amsterdam (1984), 1-61. https://doi.org/10.1016/B978-0-444-86580-9.50004-5 [+]
R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.

A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, II, Indag. Math. 71, no. 1 (1970), 18-30. https://doi.org/10.1016/1385-7258(69)90022-5

R. Hodel, Cardinal Functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan, eds., Amsterdam (1984), 1-61. https://doi.org/10.1016/B978-0-444-86580-9.50004-5

R. Hodel, The number of closed subsets of a topological space, Canadian Journal of Mathematics 30, no. 2 (1978), 301-314. https://doi.org/10.4153/CJM-1978-027-7

T. Jech, Set Theory. The third millenium edition, revised and expanded, Springer Monograph in Mathematics, Springer-Verlag Berlin Heidelberg, 2003.

S. Koppelberg, General Theory of Boolean Algebras, in: Handbook of Boolean algebras, J. D. Monk and R. Bonnet, eds., North-Holland, Amsterdam, 1989.

K. Kunen, Set theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1980.

R. E. Larson and J. A. Susan, The lattice of topologies: A survey, The Rocky Mountain Journal of Mathematics 5, no. 2 (1975), 177-198. https://doi.org/10.1216/RMJ-1975-5-2-177

L. A. Pérez-Morales, G. Delgadillo-Piñón and R. Pichardo-Mendoza, The lattice of uniform topologies on C(X), Questions and Answers in General Topology 39 (2021), 65-71.

R. Pichardo-Mendoza, Á. Tamariz-Mascarúa and H. Villegas-Rodríguez, Pseudouniform topologies on C(X) given by ideals, Comment. Math. Univ. Carolin. 54, no. 4 (2013), 557-577.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record