R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.
A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, II, Indag. Math. 71, no. 1 (1970), 18-30. https://doi.org/10.1016/1385-7258(69)90022-5
R. Hodel, Cardinal Functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan, eds., Amsterdam (1984), 1-61. https://doi.org/10.1016/B978-0-444-86580-9.50004-5
[+]
R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.
A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, II, Indag. Math. 71, no. 1 (1970), 18-30. https://doi.org/10.1016/1385-7258(69)90022-5
R. Hodel, Cardinal Functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan, eds., Amsterdam (1984), 1-61. https://doi.org/10.1016/B978-0-444-86580-9.50004-5
R. Hodel, The number of closed subsets of a topological space, Canadian Journal of Mathematics 30, no. 2 (1978), 301-314. https://doi.org/10.4153/CJM-1978-027-7
T. Jech, Set Theory. The third millenium edition, revised and expanded, Springer Monograph in Mathematics, Springer-Verlag Berlin Heidelberg, 2003.
S. Koppelberg, General Theory of Boolean Algebras, in: Handbook of Boolean algebras, J. D. Monk and R. Bonnet, eds., North-Holland, Amsterdam, 1989.
K. Kunen, Set theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1980.
R. E. Larson and J. A. Susan, The lattice of topologies: A survey, The Rocky Mountain Journal of Mathematics 5, no. 2 (1975), 177-198. https://doi.org/10.1216/RMJ-1975-5-2-177
L. A. Pérez-Morales, G. Delgadillo-Piñón and R. Pichardo-Mendoza, The lattice of uniform topologies on C(X), Questions and Answers in General Topology 39 (2021), 65-71.
R. Pichardo-Mendoza, Á. Tamariz-Mascarúa and H. Villegas-Rodríguez, Pseudouniform topologies on C(X) given by ideals, Comment. Math. Univ. Carolin. 54, no. 4 (2013), 557-577.
[-]