- -

Common fixed point results for a generalized ( ψ, φ )-rational contraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Common fixed point results for a generalized ( ψ, φ )-rational contraction

Mostrar el registro completo del ítem

Arya, MC.; Chandra, N.; Joshi, MC. (2023). Common fixed point results for a generalized ( ψ, φ )-rational contraction. Applied General Topology. 24(1):129-144. https://doi.org/10.4995/agt.2023.18320

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193029

Ficheros en el ítem

Metadatos del ítem

Título: Common fixed point results for a generalized ( ψ, φ )-rational contraction
Autor: Arya, Mahesh Chandra Chandra, N. Joshi, Mahesh C.
Fecha difusión:
Resumen:
[EN] In this paper, we obtain two common fixed point results for mappings satisfying the generalized (ψ,φ)-contractive type conditions given by a rational expression on a complete metric space. Our results generalize ...[+]
Palabras clave: Fixed point , Common fixed point , ( ψ, φ )-contraction
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.18320
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.18320
Tipo: Artículo

References

Ya. I. Alber, and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, Operator Theory Advances Appl. 98 (1997), 7-22. https://doi.org/10.1007/978-3-0348-8910-0_2

M. C. Arya, N. Chandra, and M. C. Joshi, Fixed point of (ψ,φ)-contractions on metric spaces, J. Anal. 28 (2020), 461-469. https://doi.org/10.1007/s41478-019-00181-5

H. Aydi, S. Hadj-Amor, and E. Karapinar, Some almost generalized (ψ-φ)-contractions in G-metric spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 165420. https://doi.org/10.1155/2013/312479 [+]
Ya. I. Alber, and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, Operator Theory Advances Appl. 98 (1997), 7-22. https://doi.org/10.1007/978-3-0348-8910-0_2

M. C. Arya, N. Chandra, and M. C. Joshi, Fixed point of (ψ,φ)-contractions on metric spaces, J. Anal. 28 (2020), 461-469. https://doi.org/10.1007/s41478-019-00181-5

H. Aydi, S. Hadj-Amor, and E. Karapinar, Some almost generalized (ψ-φ)-contractions in G-metric spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 165420. https://doi.org/10.1155/2013/312479

H. Aydi, E. Karapinar, and M. Postolache, Tripled coincidence point theorems for weakly ϕ-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2012 (2012): 44. https://doi.org/10.1186/1687-1812-2012-44

H. Aydi, E. Karapinar, and W. Shatanawi, Coupled fixed point results for (φ, ψ)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62, no. 12 (2011), 4449-4460. https://doi.org/10.1016/j.camwa.2011.10.021

D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-469. https://doi.org/10.1090/S0002-9939-1969-0239559-9

D. Đorić, Common fixed point for generalized (ψ,φ)-weak contraction, Appl. Math. Lett. 22 (2009), 1896-1900. https://doi.org/10.1016/j.aml.2009.08.001

P. N. Dutta, and B. S. Choudhary, A generalization of contraction principle in metric space, Fixed Point Theory Appl. 2008 (2008): 406368. https://doi.org/10.1155/2008/406368

K. Fallahi, G. Soleimani Rad, and A. Fulga, Best proximity points for (ϕ-ψ)-weak contractions and some applications, Filomat 37, no. 6 (2023), in press.

M. Gordji, H. Baghani, and G. Kim, Common fixed point theorems for (ψ,φ)-weak nonlinear contraction in partially ordered sets, Fixed Point Theory Appl. 2012 (2012): 62. https://doi.org/10.1186/1687-1812-2012-62

F. He, Y.-Q. Sun, and X.-Y. Zhao, A common fixed point theorem for generalized (ψ-φ)-weak contractions of Suzuki type, J. Math. Anal. 8, no. 2 (2017), 80-88.

D. Jain, S. Kumar, and C. Park, Variants of R-weakly commuting mappings satisfying a weak contraction, Miskolc Math. Notes 22 (2021), 259-271. https://doi.org/10.18514/MMN.2021.3013

E. Karapinar, Fixed point theory for cyclic weak φ-contraction, Anal. Appl. Lett. 24 (2015), 1-14. https://doi.org/10.1186/s13663-015-0401-7

E. Karapinar, M. Jleli, and B. Samet, Fixed point results for almost generalized cyclic (ψ-ϕ)- weak contractive type mappings with applications, Abstr. Appl. Anal. 2012 (2012): 917831.

E. Karapinar, and K. Sadarangani, Fixed point theory for cyclic (φ-ψ)-contractions, Fixed Point Theory Appl. 2011 (2011): 69. https://doi.org/10.1186/1687-1812-2011-69

E. Karapinar, and B. Samet, Generalized (α-ψ)contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012): 793486. https://doi.org/10.1155/2012/793486

E. Karapinar, M. De La Sen, and A. Fulga, A note on the Gornicki-Proinov type contraction, J. Funct. Spaces 2021 (2021), 1-8. https://doi.org/10.1155/2021/6686644

B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1

A. F. Roldán López De Hierro, A. Fulga, E. Karapinar, and N. Shahzad, Proinov-type fixed point result in non-archimedean fuzzy metric spaces, Mathematics 9, no. 14 (2021), 1594. https://doi.org/10.3390/math9141594

Q. Zhang, and Y. Song, Fixed point theory for generalized (φ)-weak contractions, Appl. Math. Lett. 22 (2009), 75-78. https://doi.org/10.1016/j.aml.2008.02.007

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem