- -

A methodology for evaluating digital contact tracing apps based on the COVID-19 experience

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A methodology for evaluating digital contact tracing apps based on the COVID-19 experience

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.date.accessioned 2023-05-12T18:01:46Z
dc.date.available 2023-05-12T18:01:46Z
dc.date.issued 2022-07-26 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193311
dc.description.abstract [EN] Controlling the spreading of infectious diseases has been shown crucial in the COVID-19 pandemic. Traditional contact tracing is used to detect newly infected individuals by tracing their previous contacts, and by selectively checking and isolating any individuals likely to have been infected. Digital contact tracing with the utilisation of smartphones was contrived as a technological aid to improve this manual, slow and tedious process. Nevertheless, despite the high hopes raised when smartphone-based contact tracing apps were introduced as a measure to reduce the spread of the COVID-19, their efficiency has been moderately low. In this paper, we propose a methodology for evaluating digital contact tracing apps, based on an epidemic model, which will be used not only to evaluate the deployed Apps against the COVID-19 but also to determine how they can be improved for future pandemics. Firstly, the model confirms the moderate effectiveness of the deployed digital contact tracing, confirming the fact that it could not be used as the unique measure to fight against the COVID-19, and had to be combined with additional measures. Secondly, several improvements are proposed (and evaluated) to increase the efficiency of digital control tracing to become a more useful tool in the future. es_ES
dc.description.sponsorship This work is derived from R&D project RTI2018-096384-B-I00, funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe". es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mobile computing es_ES
dc.subject Opportunistic networking es_ES
dc.subject Mobile crowdsensing es_ES
dc.subject Digital epidemiology es_ES
dc.subject COVID-19 es_ES
dc.subject Epidemic modeling es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A methodology for evaluating digital contact tracing apps based on the COVID-19 experience es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-17024-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Hernández-Orallo, E.; Manzoni, P.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J. (2022). A methodology for evaluating digital contact tracing apps based on the COVID-19 experience. Scientific Reports. 12(1):1-16. https://doi.org/10.1038/s41598-022-17024-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-17024-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35882975 es_ES
dc.identifier.pmcid PMC9321289 es_ES
dc.relation.pasarela S\469751 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Eames, K. & Keeling, M. Contact tracing and disease control. Proc. Biol. Sci. R. Soc. 270, 2565–2571 (2004). es_ES
dc.description.references Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2). Science (2020). es_ES
dc.description.references Ferretti, L. et al. Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science (2020). es_ES
dc.description.references PePP-PT e.V. i.Gr. Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) (https://www.pepp-pt.org) (2020). es_ES
dc.description.references MIT. Safe paths (http://safepaths.mit.edu) (2020). es_ES
dc.description.references Pelusi, L., Passarella, A. & Conti, M. Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Commun. Mag. 44, 134–141 (2006). es_ES
dc.description.references Zhang, X., Neglia, G., Kurose, J. & Towsley, D. Performance modeling of epidemic routing. Comput. Netw. 51, 2867–2891 (2007). es_ES
dc.description.references Hernández-Orallo, E., Manzoni, P., Calafate, C. T. & Cano, J. Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: The case of covid-19. IEEE Access 8, 99083–99097 (2020). es_ES
dc.description.references Salathé, M. Digital epidemiology: What is it, and where is it going?. Life Sci. Soc. Policy 14, 1 (2018). es_ES
dc.description.references Christaki, E. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence 6, 558–565 (2015). es_ES
dc.description.references Doran, D., Severin, K., Gokhale, S. & Dagnino, A. Social media enabled human sensing for smart cities. AI Commun. 29, 57–75 (2016). es_ES
dc.description.references Hernández-Orallo, E. et al. Optimising data diffusion while reducing local resources consumption in opportunistic mobile crowdsensing. Pervasive Mob. Comput. 67, 101201 (2020). es_ES
dc.description.references Salathé, M. et al. A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. 107, 22020–22025 (2010). es_ES
dc.description.references Computer Laboratory - University of Cambridge. The fluphone study (https://www.fluphone.org) (2010). es_ES
dc.description.references Raskar, R. et al. Apps gone rogue: Maintaining personal privacy in an epidemic. arXiv:2003.08567 (2020). es_ES
dc.description.references Leith, D. J. & Farrell, S. Coronavirus contact tracing: Evaluating the potential of using bluetooth received signal strength for proximity detection. SIGCOMM Comput. Commun. Rev. 50, 66–74 (2020). es_ES
dc.description.references Kindt, P. H., Chakraborty, T. & Chakraborty, S. How reliable is smartphone-based electronic contact tracing for covid-19? arXIv:2005.05625 (2020). es_ES
dc.description.references Ahmed, N. et al. A survey of covid-19 contact tracing apps. IEEE Access 8, 134577–134601 (2020). es_ES
dc.description.references Anglemyer, A. et al. Digital contact tracing technologies in epidemics: A rapid review. Cochrane Database Syst. Rev. (2020). es_ES
dc.description.references Braithwaite, I., Callender, T., Bullock, M. & Aldridge, R. W. Automated and partly automated contact tracing: A systematic review to inform the control of covid-19. The Lancet Digital Health. es_ES
dc.description.references Colizza, V. et al. Time to evaluate covid-19 contact-tracing apps. Nat. Med. 27, 361–362 (2021). es_ES
dc.description.references Kwok, K. O. et al. Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome. Comput. Struct. Biotechnol. J. 17, 186–194 (2019). es_ES
dc.description.references Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princenton University Press, Princenton, 2008). es_ES
dc.description.references Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science (New York, N.Y.) 300, 1966–1970 (2003). es_ES
dc.description.references Fraser, C., Riley, S., Anderson, R. & Ferguson, N. Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101, 6146–6151 (2004). es_ES
dc.description.references Klinkenberg, D., Fraser, C. & Heesterbeek, H. The effectiveness of contact tracing in emerging epidemics. PLoS ONE 1, 1–7 (2006). es_ES
dc.description.references Hellewell, J. et al. Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 8, e488–e496 (2020). es_ES
dc.description.references Farrahi, K., Emonet, R. & Cebrian, M. Epidemic contact tracing via communication traces. PLoS ONE 9, e95133–e95133 (2014). es_ES
dc.description.references Kretzschmar, M. E. et al. Impact of delays on effectiveness of contact tracing strategies for covid-19: A modelling study. Lancet Public Health 5, e452–e459 (2020). es_ES
dc.description.references Cencetti, G. et al. Using real-world contact networks to quantify the effectiveness of digital contact tracing and isolation strategies for covid-19 pandemic. medRxiv 2020.05.29.20115915 (2020). es_ES
dc.description.references Lambert, A. A mathematical assessment of the efficiency of quarantining and contact tracing in curbing the covid-19 epidemic. medRxiv (2020). es_ES
dc.description.references Rodríguez, P. et al. A population-based controlled experiment assessing the epidemiological impact of digital contact tracing. Nat. Commun. 12, 587 (2021). es_ES
dc.description.references Wymant, C. et al. The epidemiological impact of the nhs covid-19 app. Nature 594, 408–412 (2021). es_ES
dc.description.references Li, T. et al. What makes people install a covid-19 contact-tracing app? Understanding the influence of app design and individual difference on contact-tracing app adoption intention. Pervasive Mob. Comput. 75, 101439 (2021). es_ES
dc.description.references Grekousis, G. & Liu, Y. Digital contact tracing, community uptake, and proximity awareness technology to fight covid-19: A systematic review. Sustain. Cities Soc. 71, 102995 (2021). es_ES
dc.description.references Moreno López, J. A. et al. Anatomy of digital contact tracing: Role of age, transmission setting, adoption, and case detection. Sci. Adv. 7, eabd8750 (2021). es_ES
dc.description.references Maccari, L. & Cagno, V. Do we need a contact tracing app?. Comput. Commun. 166, 9–18 (2021). es_ES
dc.description.references Burgio, G., Steinegger, B., Rapisardi, G. & Arenas, A. The impact of homophily on digital proximity tracing (2021). es_ES
dc.description.references Hogan, K., Macedo, B., Macha, V., Barman, A. & Jiang, X. Contact tracing apps: Lessons learned on privacy, autonomy, and the need for detailed and thoughtful implementation. JMIR Med. Inform. 9, e27449 (2021). es_ES
dc.description.references Garrett, P. M. et al. The acceptability and uptake of smartphone tracking for covid-19 in Australia. PLoS ONE 16, 1–23 (2021). es_ES
dc.description.references Shubina, V., Ometov, A., Basiri, A. & Lohan, E. S. Effectiveness modelling of digital contact-tracing solutions for tackling the covid-19 pandemic. J. Navig. 74, 853–886 (2021). es_ES
dc.description.references Ma, J. et al. Proximity tracing app, report from the measurement campaign 2020-04-09. Technical Report (2020). es_ES
dc.description.references European Centre for Disease Prevention and Control. Contact tracing: Public health management of persons, including healthcare workers, having had contact with covid-19 cases in the European union—second update. Tech. Rep., Stockholm: ECDC (2020). es_ES
dc.description.references CDC: Centers for Disease Control and Prevention. Coronavirus disease 2019 (covid 19): Public health guidance for community-related exposure (2020). es_ES
dc.description.references Madoery, P. G. et al. Feature selection for proximity estimation in covid-19 contact tracing apps based on bluetooth low energy (ble). Pervasive Mob. Comput. 77, 101474 (2021). es_ES
dc.description.references Leith, D. J. & Farrell, S. Measurement-based evaluation of google/apple exposure notification api for proximity detection in a light-rail tram. PLoS ONE 15, 1–16 (2020). es_ES
dc.description.references Pueyo, T. Coronavirus: How to do testing and contact tracing. Medium (https://medium.com/@tomaspueyo) (2020). es_ES
dc.description.references A technical roadmap for the UK’s contact tracing app functionality (2020). es_ES
dc.description.references Liang, F. Covid-19 and health code: How digital platforms tackle the pandemic in China. Soc. Media Soc. 6, 2056305120947657 (2020). es_ES
dc.description.references Nam, T. How did Korea use technologies to manage the covid-19 crisis? A country report. Int. Rev. Public Admin. 25, 225–242 (2020). es_ES
dc.description.references Joo, J. & Shin, M. M. Resolving the tension between full utilization of contact tracing app services and user stress as an effort to control the covid-19 pandemic. Serv. Bus. 14, 461–478 (2020). es_ES
upv.costeAPC 1945 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem