- -

Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero-Cuellar, Jonathan es_ES
dc.contributor.author Gastulo-Tapia, Cristhian J. es_ES
dc.contributor.author Hernández-López, Mario R. es_ES
dc.contributor.author Prieto Sierra, Cristina es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2023-06-09T18:01:52Z
dc.date.available 2023-06-09T18:01:52Z
dc.date.issued 2022-04 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194039
dc.description.abstract [EN] This research develops an extension of the Model Conditional Processor (MCP), which merges clusters with Gaussian mixture models to offer an alternative solution to manage heteroscedastic errors. The new method is called the Gaussian mixture clustering post-processor (GMCP). The results of the proposed post-processor were compared to the traditional MCP and MCP using a truncated Normal distribution (MCPt) by applying multiple deterministic and probabilistic verification indices. This research also assesses the GMCP's capacity to estimate the predictive uncertainty of the monthly streamflow under different climate conditions in the "Second Workshop on Model Parameter Estimation Experiment" (MOPEX) catchments distributed in the SE part of the USA. The results indicate that all three post-processors showed promising results. However, the GMCP post-processor has shown significant potential in generating more reliable, sharp, and accurate monthly streamflow predictions than the MCP and MCPt methods, especially in dry catchments. Moreover, the MCP and MCPt provided similar performances for monthly streamflow and better performances in wet catchments than in dry catchments. The GMCP constitutes a promising solution to handle heteroscedastic errors in monthly streamflow, therefore moving towards a more realistic monthly hydrological prediction to support effective decision-making in planning and managing water resources. es_ES
dc.description.sponsorship We are grateful to Qingyun Duan for information of the MOPEX experiment. We also are grateful to the editor and two anonymous reviewers for their thoughtful comments on this manuscript. This research was funded by the department of Huila Scholarship Program No. 677 (Colombia) and Colciencias, the Vice-Presidents Research and Social Work office of the Universidad Surcolombiana, the Spanish Ministry of Science and Innovation through research project TETISCHANGE (ref. RTI2018-093717-B-I00). Cristina Prieto acknowledges the financial support from the Government of Cantabria through the Fenix Program. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Uncertainty analysis es_ES
dc.subject Water resources es_ES
dc.subject Cluster analysis es_ES
dc.subject Gaussian mixture model es_ES
dc.subject Probabilistic prediction es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w14081261 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093717-B-I00/ES/MEJORAS DEL CONOCIMIENTO Y DE LAS CAPACIDADES DE MODELIZACION PARA LA PROGNOSIS DE LOS EFECTOS DEL CAMBIO GLOBAL EN UNA CUENCA HIDROLOGICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//677/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Romero-Cuellar, J.; Gastulo-Tapia, CJ.; Hernández-López, MR.; Prieto Sierra, C.; Francés, F. (2022). Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters. Water. 14(8):1-24. https://doi.org/10.3390/w14081261 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w14081261 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\490553 es_ES
dc.contributor.funder Gobierno de Cantabria es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
upv.costeAPC 2050 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem