- -

Influence of key geometrical features on the non-reacting flow of a Lean Direct Injection (LDI) combustor through Large-Eddy Simulation and a Design of Experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of key geometrical features on the non-reacting flow of a Lean Direct Injection (LDI) combustor through Large-Eddy Simulation and a Design of Experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carreres, Marcos es_ES
dc.contributor.author GARCIA TISCAR, JORGE es_ES
dc.contributor.author Belmar-Gil, Mario es_ES
dc.contributor.author Cervelló-Sanz, David es_ES
dc.date.accessioned 2023-06-12T18:01:40Z
dc.date.available 2023-06-12T18:01:40Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 1270-9638 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194114
dc.description.abstract [EN] Lean Direct Injection (LDI) emerged as an interesting concept to limit NOx emissions in aero engines at the cost of operating close to the flame lean blow-off limit. In this technology, fuel is injected into a swirled airstream that generates recirculating flow structures that stabilize the flame. It is then of paramount importance at the design stage to understand the effect of various features on these structures. The present investigation makes use of Eulerian-Lagrangian Large-Eddy Simulations (LES) previously validated against existing experimental data for a reference condition to study the liquid non-reacting flow inside the CORIA Spray LDI burner with the help of Adaptive Mesh Refinement (AMR). A Design of Experiments (DoE) is proposed to analyze the significance of several geometrical features on the flow field, namely the combustor width, the air swirler vane angle, the number of swirler vanes and the axial location of the fuel injector tip. The study covers the qualitative appearance of the flow and the quantitative characterization of the spray dispersion and fuel-air mixing process. In this way, the chosen response variables include the size of the relevant coherent flow structures (Central Toroidal Recirculation Zone induced by the Vortex Breakdown Bubble, Corner Recirculation Zone and Swirled Jet) and their associated velocities, spray features (global drop sizes and spray penetration), pressure drop across the swirler and induced swirl number. Besides, the Precessing Vortex Core (PVC) relevance and frequency content is studied through Proper Orthogonal Decomposition (POD). Results from the statistical analysis show that the number of swirler vanes and their angle are the geometrical parameters that most importantly influence the flow features: stronger recirculation zones leading to an improved atomization and mixing have been found both when decreasing the number of swirler blades and increasing the blade angle. However, both solutions also increase the pressure losses across the swirler. As far as the spectral analysis is concerned, the number of swirler vanes is the most influencing factor on both the frequency and intensity of the PVC modes, being crucial for the possible activation and the energetic content of a double-helix PVC mode. es_ES
dc.description.sponsorship This work was partly sponsored by Grant No. PID2019- 109952RB-I00 Contribución a la aviación sostenible a través de la optimización numérica de cámaras con combustión pobre para aeromotores de nueva generación más silenciosos y limpios (QUILECOM) funded by MCIN/AEI/10.13039/501100011033. The authors thankfully acknowledge the computer resources at Altamira (RES-IM-2020-1-0018) and MareNostrum (RES-IM-2020-2-0009) in the frame of the Spanish Supercomputing Network. Additionally, the support given to Mr. Mario Belmar by Universitat Politècnica de València through the FPI-Subprograma 2 grant within the Programa de Apoyo para la Investigación y Desarrollo (PAID-01-18) is gratefully acknowledged. The authors would also like to thank Prof. Francisco Javier Salvador for the fruitful discussions on the DoE and the selection of Taguchi arrays and Ms. Alicia Muñoz for her help and support modifying the computational domain geometries. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Aerospace Science and Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Lean Direct Injection es_ES
dc.subject Large-Eddy Simulation es_ES
dc.subject Design of Experiments es_ES
dc.subject Proper Orthogonal Decomposition es_ES
dc.subject Turbulent swirling flow es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Influence of key geometrical features on the non-reacting flow of a Lean Direct Injection (LDI) combustor through Large-Eddy Simulation and a Design of Experiments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ast.2022.107634 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109952RB-I00/ES/CONTRIBUCION A LA AVIACION SOSTENIBLE A TRAVES DE LA OPTIMIZACION NUMERICA DE CAMARAS CON COMBUSTION POBRE PARA AERO-MOTORES DE NUEVA GENERACION MAS SILENCIOSOS Y LIMPIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18//Programa de Ayudas de Investigación y Desarrollo (PAID-01-18)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-101344-B-I00//OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Carreres, M.; Garcia Tiscar, J.; Belmar-Gil, M.; Cervelló-Sanz, D. (2022). Influence of key geometrical features on the non-reacting flow of a Lean Direct Injection (LDI) combustor through Large-Eddy Simulation and a Design of Experiments. Aerospace Science and Technology. 126. https://doi.org/10.1016/j.ast.2022.107634 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ast.2022.107634 es_ES
dc.description.upvformatpinicio 107634 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 126 es_ES
dc.relation.pasarela S\465180 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
upv.costeAPC 4477 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem