- -

Hu's characterization of metric completeness revisited

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hu's characterization of metric completeness revisited

Mostrar el registro completo del ítem

Romaguera Bonilla, S. (2022). Hu's characterization of metric completeness revisited. Advances in the Theory of Nonlinear Analysis and its Applications. 6:476-480. https://doi.org/10.31197/atnaa.1090077

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194430

Ficheros en el ítem

Metadatos del ítem

Título: Hu's characterization of metric completeness revisited
Autor: Romaguera Bonilla, Salvador
Fecha difusión:
Resumen:
[EN] In this note we show the somewhat surprising fact that the proof of the `if part' of the distinguished characterizations of metric completeness due to Kirk, and Suzuki and Takahashi, respectively, can be deduced in a ...[+]
Palabras clave: Fixed point , Complete metric space , Hu , Caristi-Kirk , Suzuki-Takahashi , 2010 MSC: 54H25 , 54E50 , 47H10
Derechos de uso: Reconocimiento (by)
Fuente:
Advances in the Theory of Nonlinear Analysis and its Applications. (eissn: 2587-2648 )
DOI: 10.31197/atnaa.1090077
Editorial:
Dergi Park Akademik
Versión del editor: https://doi.org/10.31197/atnaa.1090077
Tipo: Artículo

References

[1] C. Alegre, A. Fulga, E. Karapinar, P. Tirado, A discussion on p-Geraghty contraction on mw-quasi-metric spaces, Mathematics 2020, 8, 1437.

[2] C. Alegre, J. Marín, Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces, Topol. Appl. 203 (2016), 32-41.

[3] S. Al-Homidan, Q.H. Ansari, J.C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. TMA 69 (2008), 126-139. [+]
[1] C. Alegre, A. Fulga, E. Karapinar, P. Tirado, A discussion on p-Geraghty contraction on mw-quasi-metric spaces, Mathematics 2020, 8, 1437.

[2] C. Alegre, J. Marín, Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces, Topol. Appl. 203 (2016), 32-41.

[3] S. Al-Homidan, Q.H. Ansari, J.C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. TMA 69 (2008), 126-139.

[4] N. Bilgili, E. Karapinar, B. Samet, Generalized α − ψ contractive mappings in quasi-metric spaces and related fixed-pointtheorems, J. Inequal. Appl. 2014, 2014:36.

[5] M. Bota, C. Chifu, E. Karapinar, Fixed point theorems for generalized (α−ψ)-Ciric-type contractive multivalued operators in b-metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 1165-1177.

[6] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.

[7] E.H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10 (1959), 974-979.

[8] V.M. Himabindu, Suzuki-F(ψ − φ) − α type fixed point theorem on quasi metric spaces, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 43-50.

[9] T.K. Hu, On a fixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967), 436-437.

[10] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381-391

[11] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.

[12] E. Karap?nar, C. Chifu, Results in wt-distance over b-metric spaces, Mathematics 2020, 8, 220.

[13] E. Karap?nar, A. Dehici, N. Redje, On some fixed points of α − ψ-contractive mappings with rational expressions, J. Nonlinear Sci. Appl. 10 (2017), 1569-1581.

[14] E. Karap?nar, B. Samet, Generalized α−ψ contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012) Article id: 793486

[15] A.W. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81-86.

[16] H. Lakzian, I.J. Lin, The existence of fixed points for nonlinear contractive maps in metric spaces with w-distances, J. Appl. Math. 2012, Article ID 161470.

[17] H. Lakzian, V. Rakocevi¢, H. Aydi, Extensions of Kannan contraction via w-distances, Aequat. Math. 93 (2019), 1231-1244.

[18] S. Park, Characterizations of metric completeness, Colloq. Math. 69 (1984), 21-26.

[19] S. Romaguera, P. Tirado, A characterization of quasi-metric completeness in terms of α − ψ-contractive mappings having ?xed points, Mathematics 2020, 8, 16.

[20] S. Romaguera, P. Tirado, α − ψ-contractive mappings on quasi-metric spaces, Filomat 35 (2021), 1649-1659.

[21] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α−ψ-contractive type mappings, Nonlinear Anal.-Theory Methods Appl. 75 (2012), 2154-2165.

[22] P.V. Subrahmanyam, Completeness and ?xed-points, Mh. Math. 80 (1975), 325-330.

[23] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869.

[24] T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness, Top. Methods Nonlinear Anal. 8 (1996), 371-382.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem