- -

Quantizations and Global Hypoellipticity for Pseudodifferential Operators of Infinite Order in Classes of Ultradifferentiable Functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantizations and Global Hypoellipticity for Pseudodifferential Operators of Infinite Order in Classes of Ultradifferentiable Functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Asensio López, Vicente es_ES
dc.date.accessioned 2023-06-26T18:01:22Z
dc.date.available 2023-06-26T18:01:22Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 1660-5446 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194557
dc.description.abstract [EN] We study the change of quantization for a class of global pseudodifferential operators of infinite order in the setting of ultradifferentiable functions of Beurling type. The composition of different quantizations as well as the transpose of a quantization are also analysed, with applications to the Weyl calculus. We also compare global w-hypoellipticity and global co-regularity of these classes of pseudodifferential operators. es_ES
dc.description.sponsorship The author was supported by the projects GV PROMETEO/2017/102 and PROMETEO/2021/070. He is greatly indebted to David Jornet for his helpful comments and ideas, and for the careful reading of the paper. The author would also like to thank Chiara Boiti for the revision of the paper. This is part of the author's Ph.D. Thesis. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mediterranean Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Global classes es_ES
dc.subject Pseudodifferential operator es_ES
dc.subject Quantizations es_ES
dc.subject Hypoellipticity es_ES
dc.title Quantizations and Global Hypoellipticity for Pseudodifferential Operators of Infinite Order in Classes of Ultradifferentiable Functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00009-022-02034-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F070//Análisis funcional, dinámica de operadores y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Asensio López, V. (2022). Quantizations and Global Hypoellipticity for Pseudodifferential Operators of Infinite Order in Classes of Ultradifferentiable Functions. Mediterranean Journal of Mathematics. 19(3):1-36. https://doi.org/10.1007/s00009-022-02034-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00009-022-02034-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\484231 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.description.references Asensio V., Boiti C., Jornet D., Oliaro, A.: Global Wave Front Sets in Ultradifferentiable Classes. Results Math. 77, Paper No. 65, 40 (2022) es_ES
dc.description.references Asensio, V., Jornet, D.: Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 4, 3477–3512 es_ES
dc.description.references Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6, 351–407 (1966) es_ES
dc.description.references Boggiatto, P., Buzano, E., Rodino, L.: Global hypoellipticity and spectral theory, Mathematical Research, vol. 92. Akademie Verlag, Berlin (1996) es_ES
dc.description.references Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446(1), 920–944 (2017) es_ES
dc.description.references Boiti, C., Jornet, D., Oliaro, A.: The Gabor wave front set in spaces of ultradifferentiable functions. Monatsh. Math. 188(2), 199–246 (2019) es_ES
dc.description.references Boiti, C., Jornet, D., Oliaro, A.: Real Paley-Wiener theorems in spaces of ultradifferentiable functions, J. Funct. Anal. 278 (2020), no. 4, 108348, 45 es_ES
dc.description.references Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007) es_ES
dc.description.references Braun, R.W.: An extension of Komatsu’s second structure theorem for ultradistributions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), no. 2, 411–417 es_ES
dc.description.references Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17(3–4), 206–237 (1990) es_ES
dc.description.references Cappiello, M.: Pseudodifferential parametrices of infinite order for SG-hyperbolic problems. Rend. Sem. Mat. Univ. Politec. Torino 61(4), 411–441 (2003) es_ES
dc.description.references Cappiello, M.: Fourier integral operators of infinite order and applications to SG-hyperbolic equations. Tsukuba J. Math. 28(2), 311–361 (2004) es_ES
dc.description.references Cappiello, M., Pilipović, S., Prangoski, B.: Parametrices and hypoellipticity for pseudodifferential operators on spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 5(4), 491–506 (2014) es_ES
dc.description.references Cappiello, M., Toft, J.: Pseudo-differential operators in a Gelfand-Shilov setting. Math. Nachr. 290(5–6), 738–755 (2017) es_ES
dc.description.references Fernández, C., Galbis, A.: Superposition in classes of ultradifferentiable functions. Publ. Res. Inst. Math. Sci. 42(2), 399–419 (2006) es_ES
dc.description.references Fernández, C., Galbis, A., Jornet, D.: $$\omega $$-hypoelliptic differential operators of constant strength, J. Math. Anal. Appl. 297 (2004), no. 2, 561–576, Special issue dedicated to John Horváth es_ES
dc.description.references Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005) es_ES
dc.description.references Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004) es_ES
dc.description.references Heinrich, T., Meise, R.: A support theorem for quasianalytic functionals. Math. Nachr. 280(4), 364–387 (2007) es_ES
dc.description.references Komatsu, H.: Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105 es_ES
dc.description.references Langenbruch, M.: Continuation of Gevrey regularity for solutions of partial differential operators, Functional analysis (Trier, 1994), de Gruyter, Berlin, 1996, pp. 249–280 es_ES
dc.description.references Mele, C., Oliaro, A.: Regularity of global solutions of partial differential equations in non isotropic ultradifferentiable spaces via time-frequency methods. J. Differ. Equ. 286, 821–855 (2021) es_ES
dc.description.references Nicola, F., Rodino, L.: Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications, vol. 4, Birkhäuser Verlag, Basel, (2010) es_ES
dc.description.references Petzsche, H.J., Vogt, D.: Almost analytic extension of ultradifferentiable functions and the boundary values of holomorphic functions. Math. Ann. 267(1), 17–35 (1984) es_ES
dc.description.references Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013) es_ES
dc.description.references Shubin, M.A.: Pseudodifferential operators and spectral theory, 2nd edn. Springer-Verlag, Berlin (2001) es_ES
dc.description.references Zanghirati, L.: Pseudodifferential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara Sez. VII (N.S.) 31 (1985), 197–219 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem