- -

On solid cores and hulls of weighted Bergman spaces A^1_mu

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On solid cores and hulls of weighted Bergman spaces A^1_mu

Mostrar el registro completo del ítem

Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2022). On solid cores and hulls of weighted Bergman spaces A^1_mu. Journal of Mathematical Sciences. 266:239-250. https://doi.org/10.1007/s10958-022-05764-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194823

Ficheros en el ítem

Metadatos del ítem

Título: On solid cores and hulls of weighted Bergman spaces A^1_mu
Autor: Bonet Solves, José Antonio Lusky, Wolfgang Taskinen, Jari
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura
Fecha difusión:
Resumen:
[EN] We consider weighted Bergman spaces A^1_mu on the unit disc as well as the corresponding spaces of entire functions, defined using non-atomic Borel measures with radial symmetry. By extending the techniques from the ...[+]
Palabras clave: Bergman space , Weighted L1-norm , Unit disc , Solid hull , Solid core
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Mathematical Sciences. (issn: 1072-3374 )
DOI: 10.1007/s10958-022-05764-5
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/s10958-022-05764-5
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119457GB-I00/ES/METODOS DEL ANALISIS FUNCIONAL PARA LA TEORIA DE OPERADORES Y EL ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
Agradecimientos:
Open Access funding provided by University of Helsinki including Helsinki University Central Hospital. The research of Bonet was partially supported by the project MCIN PID2020-119457GB-I00/AEI/10.13039/501100011033
Tipo: Artículo

References

J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255–265.

J. Bonet and J. Taskinen, Solid hulls of weighted Banach spaces of entire functions, Rev. Mat. Iberoam. 34 (2018), no. 2, 593–608

J. Bonet, J. Taskinen: Solid hulls of weighted Banach spaces of analytic functions on the unit disc with exponential weights. Ann. Acan. Sci. Fenn. Math. 43 (2018), 521–530. [+]
J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255–265.

J. Bonet and J. Taskinen, Solid hulls of weighted Banach spaces of entire functions, Rev. Mat. Iberoam. 34 (2018), no. 2, 593–608

J. Bonet, J. Taskinen: Solid hulls of weighted Banach spaces of analytic functions on the unit disc with exponential weights. Ann. Acan. Sci. Fenn. Math. 43 (2018), 521–530.

J. Bonet, W. Lusky, J. Taskinen: Solid hulls and cores of weighted $$H^\infty$$-spaces. Rev. Mat. Complutense 31 (2018), 781–804.

J. Bonet, W. Lusky, J. Taskinen, Solid cores and solid hulls of weighted Bergman spaces, Banach J. Math. Anal. 13 (2019), 468–485,

J. Bonet, W. Lusky, J. Taskinen, Unbounded Bergman projections on weighted spaces with respect to exponential weights, to appear in Integral Eq. Operator Th.

M. Buntinas, Products of sequence spaces, Analysis 7 (1987), 293–304.

M. Buntinas, N. Tanović-Miller, Absolute Boundedness and Absolute Convergence in Sequence Spaces, Proc. Amer. Math. Soc. 111 (1991), No. 4, 967–979.

P.L. Duren, Theory of $$H_p$$-spaces, Academic Press, New York and London, 1970.

A. Harutyunyan, W.Lusky, On $$L_1-$$subspaces of holomorphic functions, Studia Math. 198 (2010), 157–175

Z. Hu, X. Lv, A. Schuster, Bergman spaces with exponential weights, J. Functional Anal. 276 (2019), 1402–1429.

M. Jevtić, D. Vukotić, M. Arsenović, Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces, RSME Springer Series, Volume 2. Springer 2016.

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1986.

W. Lusky, On the Fourier series of unbounded harmonic functions, J. Lond. Math. Soc. (2) 61 (2000), 568-580.

W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175 (2006), 19–45.

M. Pavlović, Function classes on the unit disc. An introduction, De Gruyter Studies in Mathematics, 52. De Gruyter, Berlin, 2014.

P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. press, Cambridge, 1991.

A. Zygmund, Trigonometric series, 2nd rev. ed., Cambridge Univ. Press, New York, 1959.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem