Mostrar el registro sencillo del ítem
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.contributor.author | ROMERO GOMEZ, JOSE ENRIQUE | es_ES |
dc.contributor.author | COUPÉ, PIERRICK | es_ES |
dc.date.accessioned | 2023-07-24T18:02:42Z | |
dc.date.available | 2023-07-24T18:02:42Z | |
dc.date.issued | 2022-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195424 | |
dc.description.abstract | [EN] In Magnetic Resonance Imaging (MRI), depending on the image acquisition settings, a large number of image types or contrasts can be generated showing complementary information of the same imaged subject. This multi-spectral information is highly beneficial since can improve MRI analysis tasks such as segmentation and registration, thanks to pattern ambiguity reduction. However, the acquisition of several contrasts is not always possible due to time limitations and patient comfort constraints. Contrast synthesis has emerged recently as an approximate solution to generate other image types different from those acquired originally. Most of the previously proposed methods for contrast synthesis are slice-based which result in intensity inconsistencies between neighbor slices when applied in 3D. We propose the use of a 3D convolutional neural network (CNN) capable of generating T2 and FLAIR images from a single anatomical T1 source volume. The proposed network is a 3D variant of the UNet that processes the whole volume at once breaking with the inconsistency in the resulting output volumes related to 2D slice or patch-based methods. Since working with a full volume at once has a huge memory demand we have introduced a spatial-to-depth and a reconstruction layer that allows working with the full volume but maintain the required network complexity to solve the problem. Our approach enhances the coherence in the synthesized volume while improving the accuracy thanks to the integrated three-dimensional context-awareness. Finally, the proposed method has been validated with a segmentation method, thus demonstrating its usefulness in a direct and relevant application. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish DPI2017-87743-R grant from the Ministerio de Economia, Industria y Competitividad of Spain. This study has been also carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project) and Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57). The authors gratefully acknowledge the support of NVIDIA Corporation with their donation of the TITAN X GPU used in this research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Biomedical Physics & Engineering Express | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | MRI | es_ES |
dc.subject | Synthesis | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Deep learning based MRI contrast synthesis using full volume prediction using full volume prediction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/2057-1976/ac3c64 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87743-R/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO DEL CEREBRO TOLERANTE A LA PRESENCIA DE ALTERACIONES PATOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-03-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-57/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Manjón Herrera, JV.; Romero Gomez, JE.; Coupé, P. (2022). Deep learning based MRI contrast synthesis using full volume prediction using full volume prediction. Biomedical Physics & Engineering Express. 8(1):1-10. https://doi.org/10.1088/2057-1976/ac3c64 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/2057-1976/ac3c64 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2057-1976 | es_ES |
dc.identifier.pmid | 34814130 | es_ES |
dc.relation.pasarela | S\462328 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |