- -

Positivity-preserving methods for ordinary differential equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Positivity-preserving methods for ordinary differential equations

Show full item record

Blanes Zamora, S.; Iserles, A.; Macnamara, S. (2022). Positivity-preserving methods for ordinary differential equations. ESAIM Mathematical Modelling and Numerical Analysis. 56(6):1843-1870. https://doi.org/10.1051/m2an/2022042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/196131

Files in this item

Item Metadata

Title: Positivity-preserving methods for ordinary differential equations
Author: Blanes Zamora, Sergio Iserles, Arieh MacNamara, Shev
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Issued date:
Abstract:
[EN] Many important applications are modelled by differential equations with positive solutions. However, it remains an outstanding open problem to develop numerical methods that are both (i) of a high order of accuracy ...[+]
Subjects: Positivity-preserving methods , Graph Laplacian matrices , Exponential integrators , Magnus integrators
Copyrigths: Reconocimiento (by)
Source:
ESAIM Mathematical Modelling and Numerical Analysis. (issn: 0764-583X )
DOI: 10.1051/m2an/2022042
Publisher:
EDP Sciences
Publisher version: https://doi.org/10.1051/m2an/2022042
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/
info:eu-repo/grantAgreement/EPSRC//EP%2FR014604%2F1/
info:eu-repo/grantAgreement/MICINN//PID2019-104927GB-C21//METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/
Thanks:
The authors thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme "Geometry, compatibility and structure preservation in computational differential equations" when work ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record