- -

CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance

Mostrar el registro completo del ítem

A. Gil; Navarro, R.; Quintero-Igeño, P.; Mares-Bou, A.; Pérez, M.; Montero, A. (2022). CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance. Biomechanics and Modeling in Mechanobiology. 21(4):1201-1215. https://doi.org/10.1007/s10237-022-01585-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/196138

Ficheros en el ítem

Metadatos del ítem

Título: CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance
Autor: A. Gil Navarro, Roberto Quintero-Igeño, Pedro-Manuel Mares-Bou, Andrea Pérez, Manuel Montero, Anastasio
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Mechanical circulatory support using ventricular assist devices has become commonplace in the treatment of patients suffering from advanced stages of heart failure. While blood damage generated by these devices has ...[+]
Palabras clave: Centrifugal blood pump , Operating map , Non-dimensional analysis , Gap clearance , Shear stress , Hemolysis
Derechos de uso: Reserva de todos los derechos
Fuente:
Biomechanics and Modeling in Mechanobiology. (issn: 1617-7959 )
DOI: 10.1007/s10237-022-01585-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10237-022-01585-2
Agradecimientos:
This study was partially funded by UPV-La Fe through the innovation projects subprogram (reference MODELVAD).
Tipo: Artículo

References

Almenar L, Díaz Molina B, Comín Colet J, Pérez De La Sota E (2011) Insuficiencia cardiaca y trasplante. Rev Esp Cardiol 64:42–49. https://doi.org/10.1016/S0300-8932(11)70006-9

Al-Quthami AH, Jumean M, Kociol R et al (2012) Eptifibatide for the treatment of heartmate II left ventricular assist device thrombosis. Circ Heart Fail 5:68–70. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966804

Avci M, Heck M, O’Rear EA, Papavassiliou DV (2021) Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01471-3 [+]
Almenar L, Díaz Molina B, Comín Colet J, Pérez De La Sota E (2011) Insuficiencia cardiaca y trasplante. Rev Esp Cardiol 64:42–49. https://doi.org/10.1016/S0300-8932(11)70006-9

Al-Quthami AH, Jumean M, Kociol R et al (2012) Eptifibatide for the treatment of heartmate II left ventricular assist device thrombosis. Circ Heart Fail 5:68–70. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966804

Avci M, Heck M, O’Rear EA, Papavassiliou DV (2021) Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01471-3

Bartoli CR, Zhang D, Kang J et al (2018) Clinical and in vitro evidence that subclinical hemolysis contributes to LVAD thrombosis. Ann Thorac Surg 105:807–814. https://doi.org/10.1016/j.athoracsur.2017.05.060

Billett HH (1990) Hemoglobin and Hematocrit. In: HK W, WD H, JW H (eds) Clinical methods: the history, physical, and laboratory examinations

Bluestein D, Chandran KB, Manning KB (2010) Towards non-thrombogenic performance of blood recirculating devices. Ann Biomed Eng 38:1236–1256. https://doi.org/10.1007/s10439-010-9905-9

Boneu B, Fernandez F (1987) The role of the hematocrit in bleeding. Transfus Med Rev 1:182–185. https://doi.org/10.1016/S0887-7963(87)70020-0

Chen Z, Jena SK, Giridharan GA et al (2019) Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med Biol Eng Comput 57:807–818. https://doi.org/10.1007/s11517-018-1922-0

Craven BA, Aycock KI, Herbertson LH, Malinauskas RA (2019) A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Biomech Model Mechanobiol 18:1005–1030. https://doi.org/10.1007/s10237-019-01126-4

Farinas MI, Garon A, Lacasse D, N’dri D (2006) Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng 128:688–696. https://doi.org/10.1115/1.2241663

Foster G (2018) Third-generation ventricular assist devices. In: Gregory SD, Stevens MC, and Fraser JF (eds) Mechanical circulatory and respiratory support. Elsevier, London

Fraser KH, Taskin ME, Griffith BP, Wu ZJ (2011) The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33:263–280. https://doi.org/10.1016/j.medengphy.2010.10.014

Galindo J, Serrano JR, Navarro R, García-Olivas G (2020) Numerical modeling of centrifugal compressors with heterogeneous incoming flow due to low pressure exhaust gas recirculation. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines. Virtual, Online. September 21–25, 2020. V008T20A028. ASME. https://doi.org/10.1115/GT2020-16030

Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28:1016–1025. https://doi.org/10.1111/j.1525-1594.2004.00026.x

Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297. https://doi.org/10.1007/s10439-007-9411-x

Granegger M, Thamsen B, Schlöglhofer T et al (2020) Blood trauma potential of the heartware ventricular assist device in pediatric patients. J Thorac Cardiovasc Surg 159:1519–1527. https://doi.org/10.1016/j.jtcvs.2019.06.084

Gross-Hardt S, Boehning F, Steinseifer U et al (2019) Mesh sensitivity analysis for quantitative shear stress assessment in blood pumps using computational fluid dynamics. J Biomech Eng. https://doi.org/10.1115/1.4042043

Heras S (2011) Fluidos, bombas e instalaciones hidráulicas

Heuser G, Opitz R (1980) A couette viscometer for short time shearing of blood. Biorheology 17:17–24

Jain P, Shehab S, Muthiah K et al (2019) Insights into myocardial oxygen consumption, energetics, and efficiency under left ventricular assist device support using noninvasive pressure-volume loops. Circ Heart Fail 12:1–12. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006191

Karimi MS, Razzaghi P, Raisee M et al (2021) Stochastic simulation of the FDA centrifugal blood pump benchmark. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01482-0

Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transpl 33:555–564. https://doi.org/10.1016/j.healun.2014.04.010

Larose JA, Tamez D, Ashenuga M, Reyes C (2010) Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J 56:285–289. https://doi.org/10.1097/MAT.0b013e3181dfbab5

McKellar S (2020) A history of mechanical circulatory support. In: Karimov J, Fukamachi KSR (eds) Mechanical support for heart failure. Springer, pp 3–17

Menter FR (1993) Zonal two equation k-w turbulence models for aerodynamic flows. AIAA

Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146. https://doi.org/10.1136/hrt.2003.025270

Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge

Rezaienia MA, Paul G, Avital E et al (2018) Computational parametric study of the axial and radial clearances in a centrifugal rotary blood pump. ASAIO J 64:643–650. https://doi.org/10.1097/MAT.0000000000000700

Schöps M, Groß-Hardt SH, Schmitz-Rode T et al (2021) Hemolysis at low blood flow rates: in-vitro and in-silico evaluation of a centrifugal blood pump. J Transl Med 19:1–10. https://doi.org/10.1186/s12967-020-02599-z

Siemens CD-Adapco. STAR-CCM+ release version 15.02.007

Smith WA, Allaire P, Antaki J et al (2004) Collected nondimensional performance of rotary dynamic blood pumps. ASAIO J 50:25–32. https://doi.org/10.1097/01.MAT.0000104817.39941.9C

Song X, Throckmorton AL, Wood HG et al (2003) Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 27:938–941. https://doi.org/10.1046/j.1525-1594.2003.00026.x

Spiegel M, Redel T, Zhang JJ et al (2011) Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput Methods Biomech Biomed Eng 14:9–22. https://doi.org/10.1080/10255842.2010.518565

Stehlik J, Edwards LB, Kucheryavaya AY et al (2010) The registry of the international society for heart and lung transplantation: twenty-seventh official adult heart transplant report. J Heart Lung Transpl 29:1089–1103. https://doi.org/10.1016/j.healun.2010.08.007

Taskin ME, Fraser KH, Zhang T et al (2012) Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J 58:363–372. https://doi.org/10.1097/MAT.0b013e318254833b

Thamsen B, Blümel B, Schaller J et al (2015) Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artif Organs 39:651–659. https://doi.org/10.1111/aor.12542

Thamsen B, Gülan U, Wiegmann L et al (2020) Assessment of the flow field in the HeartMate 3 using three-dimensional particle tracking velocimetry and comparison to computational fluid dynamics. ASAIO J 66:173–182. https://doi.org/10.1097/MAT.0000000000000987

Torregrosa AJ, Gil A, Quintero P, Tiseira A (2019) Enhanced design methodology of a low power stall regulated wind turbine. BEMT and MRF-RANS combination and comparison with existing designs. J Wind Eng Ind Aerodyn 190:230–244. https://doi.org/10.1016/j.jweia.2019.04.019

Wang Y, Shen P, Zheng M et al (2019) Influence of impeller speed patterns on hemodynamic characteristics and hemolysis of the blood pump. Appl Sci. https://doi.org/10.3390/app9214689

Wiegmann L, Boës S, de Zélicourt D et al (2018) Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility. Ann Biomed Eng 46:417–428. https://doi.org/10.1007/s10439-017-1951-0

Wiegmann L, Thamsen B, de Zélicourt D et al (2019) Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs 43:363–376. https://doi.org/10.1111/aor.13346

World Health Organization (2014) Global status report on noncommunicable diseases

Wu P, Huo J, Dai W et al (2021) On the optimization of a centrifugal maglev blood pump through design variations. Front Physiol 12:1–10. https://doi.org/10.3389/fphys.2021.699891

Zhang J, Chen Z, Griffith BP, Wu ZJ (2020) Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps. Int J Artif Organs 43:653–662. https://doi.org/10.1177/0391398820903734

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem