Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511
Bair E, Hastie T, Paul D, Tibshirani R (2006) Prediction by supervised principal components. J Am Stat Assoc 101(473):119–137
Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202
[+]
Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511
Bair E, Hastie T, Paul D, Tibshirani R (2006) Prediction by supervised principal components. J Am Stat Assoc 101(473):119–137
Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202
Beisser D, Klau GW, Dandekar T, Müller T, Dittrich MT (2010) Bionet: an r-package for the functional analysis of biological networks. Bioinformatics 26(8):1129–1130
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(Feb):281–305
Bühlmann P, Rütimann P, van de Geer S, Zhang CH (2013) Correlated variables in regression: clustering and sparse estimation. J Stat Plan Inference 143(11):1835–1858
Chen K, Chen K, Müller HG, Wang JL (2011) Stringing high-dimensional data for functional analysis. J Am Stat Assoc 106(493):275–284
Ciuperca G (2020) Adaptive elastic-net selection in a quantile model with diverging number of variable groups. Statistics 54(5):1147–1170
Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T (2008) Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231
Eddelbuettel D, François R (2011) Rcpp: seamless R and C++ integration. J Stat Softw 40(8):1–18
Friedman J, Hastie T, Tibshirani R (2010a) A note on the group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736
Friedman J, Hastie T, Tibshirani R (2010b) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1
Kuhn M (2020) tune: Tidy Tuning Tools. https://CRAN.R-project.org/package=tune, r package version 0.1.0
Kuhn M, Vaughan D (2020) parsnip: a Common API to Modeling and Analysis Functions. https://CRAN.R-project.org/package=parsnip, r package version 0.0.5
Laria JC, Carmen Aguilera-Morillo M, Lillo RE (2019) An iterative sparse-group lasso. J Comput Graph Stat 28(3):722–731
Luo S, Chen Z (2020) Feature selection by canonical correlation search in high-dimensional multiresponse models with complex group structures. J Am Stat Assoc 115(531):1227–1235
Moore DF (2016) Applied survival analysis using R. Springer, New York
Ndiaye E, Fercoq O, Gramfort A, Salmon J (2016) Gap safe screening rules for sparse-group lasso. In: Advances in Neural Information Processing Systems, pp 388–396
Price BS, Sherwood B (2017) A cluster elastic net for multivariate regression. J Mach Learn Res 18(1):8685–8723
Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850
Ren S, Kang EL, Lu JL (2020) Mcen: a method of simultaneous variable selection and clustering for high-dimensional multinomial regression. Stat Comput 30(2):291–304
Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma. N Engl J Med 346(25):1937–1947
Shen H, Huang JZ (2008) Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal 99(6):1015–1034
Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22(2):231–245
Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp 2951–2959
Therneau TM (2015) A package for survival analysis in S. https://CRAN.R-project.org/package=survival, version 2.38
Therneau TM, Grambsch PM (2000) Modeling survival data: extending the cox model. Springer, New York
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58(1):267–288
Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, Tibshirani RJ (2012) Strong rules for discarding predictors in lasso-type problems. J R Stat Soc Ser B 74(2):245–266
Witten DM, Shojaie A, Zhang F (2014) The cluster elastic net for high-dimensional regression with unknown variable grouping. Technometrics 56(1):112–122
Zhang Y, Zhang N, Sun D, Toh KC (2020) An efficient hessian based algorithm for solving large-scale sparse group lasso problems. Math Program 179(1):223–263
Zhao H, Wu Q, Li G, Sun J (2019) Simultaneous estimation and variable selection for interval-censored data with broken adaptive ridge regression. J Am Stat Assoc 1–13
Zhou N, Zhu J (2010) Group variable selection via a hierarchical lasso and its oracle property. Stat Interface 3:557–574
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67(2):301–320
[-]