- -

Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models

Mostrar el registro completo del ítem

Laria, JC.; Aguilera-Morillo, MC.; Lillo, RE. (2022). Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models. Statistical Papers. 64(1):227-253. https://doi.org/10.1007/s00362-022-01313-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197838

Ficheros en el ítem

Metadatos del ítem

Título: Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models
Autor: Laria, Juan C. Aguilera-Morillo, M. Carmen Lillo, Rosa E.
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] This paper introduces the Group Linear Algorithm with Sparse Principal decomposition, an algorithm for supervised variable selection and clustering. Our approach extends the Sparse Group Lasso regularization to calculate ...[+]
Palabras clave: Regression , Classification , Feature clustering , Statistical computing
Derechos de uso: Reserva de todos los derechos
Fuente:
Statistical Papers. (issn: 0932-5026 )
DOI: 10.1007/s00362-022-01313-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00362-022-01313-z
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104901RB-I00/ES/NUEVAS ESTRATEGIAS EN REGRESION PENALIZADA CON APLICACIONES EN SALUD, DEMOGRAFIA Y ECONOMIA/
Tipo: Artículo

References

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511

Bair E, Hastie T, Paul D, Tibshirani R (2006) Prediction by supervised principal components. J Am Stat Assoc 101(473):119–137

Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202 [+]
Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511

Bair E, Hastie T, Paul D, Tibshirani R (2006) Prediction by supervised principal components. J Am Stat Assoc 101(473):119–137

Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202

Beisser D, Klau GW, Dandekar T, Müller T, Dittrich MT (2010) Bionet: an r-package for the functional analysis of biological networks. Bioinformatics 26(8):1129–1130

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(Feb):281–305

Bühlmann P, Rütimann P, van de Geer S, Zhang CH (2013) Correlated variables in regression: clustering and sparse estimation. J Stat Plan Inference 143(11):1835–1858

Chen K, Chen K, Müller HG, Wang JL (2011) Stringing high-dimensional data for functional analysis. J Am Stat Assoc 106(493):275–284

Ciuperca G (2020) Adaptive elastic-net selection in a quantile model with diverging number of variable groups. Statistics 54(5):1147–1170

Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T (2008) Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231

Eddelbuettel D, François R (2011) Rcpp: seamless R and C++ integration. J Stat Softw 40(8):1–18

Friedman J, Hastie T, Tibshirani R (2010a) A note on the group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736

Friedman J, Hastie T, Tibshirani R (2010b) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1

Kuhn M (2020) tune: Tidy Tuning Tools. https://CRAN.R-project.org/package=tune, r package version 0.1.0

Kuhn M, Vaughan D (2020) parsnip: a Common API to Modeling and Analysis Functions. https://CRAN.R-project.org/package=parsnip, r package version 0.0.5

Laria JC, Carmen Aguilera-Morillo M, Lillo RE (2019) An iterative sparse-group lasso. J Comput Graph Stat 28(3):722–731

Luo S, Chen Z (2020) Feature selection by canonical correlation search in high-dimensional multiresponse models with complex group structures. J Am Stat Assoc 115(531):1227–1235

Moore DF (2016) Applied survival analysis using R. Springer, New York

Ndiaye E, Fercoq O, Gramfort A, Salmon J (2016) Gap safe screening rules for sparse-group lasso. In: Advances in Neural Information Processing Systems, pp 388–396

Price BS, Sherwood B (2017) A cluster elastic net for multivariate regression. J Mach Learn Res 18(1):8685–8723

Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

Ren S, Kang EL, Lu JL (2020) Mcen: a method of simultaneous variable selection and clustering for high-dimensional multinomial regression. Stat Comput 30(2):291–304

Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma. N Engl J Med 346(25):1937–1947

Shen H, Huang JZ (2008) Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal 99(6):1015–1034

Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22(2):231–245

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp 2951–2959

Therneau TM (2015) A package for survival analysis in S. https://CRAN.R-project.org/package=survival, version 2.38

Therneau TM, Grambsch PM (2000) Modeling survival data: extending the cox model. Springer, New York

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58(1):267–288

Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, Tibshirani RJ (2012) Strong rules for discarding predictors in lasso-type problems. J R Stat Soc Ser B 74(2):245–266

Witten DM, Shojaie A, Zhang F (2014) The cluster elastic net for high-dimensional regression with unknown variable grouping. Technometrics 56(1):112–122

Zhang Y, Zhang N, Sun D, Toh KC (2020) An efficient hessian based algorithm for solving large-scale sparse group lasso problems. Math Program 179(1):223–263

Zhao H, Wu Q, Li G, Sun J (2019) Simultaneous estimation and variable selection for interval-censored data with broken adaptive ridge regression. J Am Stat Assoc 1–13

Zhou N, Zhu J (2010) Group variable selection via a hierarchical lasso and its oracle property. Stat Interface 3:557–574

Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67(2):301–320

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem