Mostrar el registro sencillo del ítem
dc.contributor.author | Núñez-Andrés, M. Amparo | es_ES |
dc.contributor.author | Lantada Zarzosa, Nieves | es_ES |
dc.contributor.author | Martínez Llario, José Carlos | es_ES |
dc.date.accessioned | 2023-10-06T18:01:24Z | |
dc.date.available | 2023-10-06T18:01:24Z | |
dc.date.issued | 2022-07 | es_ES |
dc.identifier.issn | 0921-030X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197846 | |
dc.description.abstract | [EN] The fragmentation phenomenon has a significant effect on rockfall risk assessment. This information is difficult to obtain, but it is key to improving rockfall modelling. For this reason, the RockModels team has gathered data on the fragmentation of several natural events since 2014 that nowadays wants to share them with professionals, academics and stakeholders. The best way for the dissemination of this information is the use of standard or data specifications in order to be interoperable. A fragmentation rockfall database has been created using all the gathered information, according to the INSPIRE Natural Hazard Area Data Specification currently in force. However, new tables have had to be added, since this specification does not consider fragmentation data. There are currently 6000 records of geometries of source areas, envelopes, deposits and mostly individual blocks. A web mapping application, with an automatic function for coordinate reference system transformation, has been created to facilitate access to the spatial database information. All that was developed on open-source software such as OpenLayers JavaScript library, database (PostGre-PostGIS) and the map generating Web Map Service (GeoServer). As more data are collected, the database can be easily updated and the new information will be published. Moreover, to improve data interpretation, a future task is to incorporate 3D models on the web application. The existence of this public database will facilitate research and advance in knowledge of this kind of natural hazards. [GRAPHICS] | es_ES |
dc.description.sponsorship | Most of the data collected were funding by the Project "Rockfalls in cliffs: risk quantification and its prevention (RockRisk)" Ref. BIA2013-42582-P, funded by the Spanish Ministry of Economy and Competitiveness. The RockDB and WMS implementation were supported by Projects: "Characterization and modelling of rockfalls (RockModels)" Ref.BIA2016-75668-P (AEI/FEDER,UE), funded by the Ministerio de Ciencia e Innovacion (MCIN) co-funded by the Agencia Estatal de Investigation (AEI) and The European Regional Development Fund (ERDF or FEDER in Spanish) and the Project "Advances in rockfall quantitative risk analysis (QRA) incorporating developments in geomatics (GeoRisk)" with reference PID2019-103974RB-I00, funded by MCIN/AEI/10.13039/501100011033. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Natural Hazards | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Rockfall database | es_ES |
dc.subject | Fragmentation data | es_ES |
dc.subject | SDI | es_ES |
dc.subject | Web mapping | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11069-022-05282-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103974RB-I00/ES/AVANCES EN EL ANALISIS DE LA CUANTIFICACION DEL RIESGO (QRA) POR DESPRENDIMIENTOS ROCOSOS EMPLEANDO AVANCES EN LAS TECNICAS GEOMATICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIA2016-75668-P/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2013-42582-P/ES/DESPRENDIMIENTOS EN ESCARPES ROCOSOS: CUANTIFICACION DEL RIESGO Y SU PREVENCION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica | es_ES |
dc.description.bibliographicCitation | Núñez-Andrés, MA.; Lantada Zarzosa, N.; Martínez Llario, JC. (2022). Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information. Natural Hazards. 112(3):2649-2672. https://doi.org/10.1007/s11069-022-05282-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11069-022-05282-2 | es_ES |
dc.description.upvformatpinicio | 2649 | es_ES |
dc.description.upvformatpfin | 2672 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 112 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\456220 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Aye ZC, Olyazadeh R, Derron M-H et al (2017) Learning risk management of geohazards in practice with free and open-source web-GIS based platform: RISKGIS. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2017-85 | es_ES |
dc.description.references | Blahut J, Poretti I, de Amicis M, Sterlacchini S (2012) Database of geo-hydrological disasters for civil protection purposes. Nat Hazards 60:1065–1083. https://doi.org/10.1007/s11069-011-9893-6 | es_ES |
dc.description.references | Bobrowsky P (ed) (2013) Encyclopedia of natural hazards. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-4399-4 | es_ES |
dc.description.references | Breunig M, Kuper PV, Butwilowski E et al (2016) The story of DB4GeO–a service-based geo-database architecture to support multi-dimensional data analysis and visualization. ISPRS J Photogramm Remote Sens 117:187–205. https://doi.org/10.1016/j.isprsjprs.2015.12.006 | es_ES |
dc.description.references | Buill F, Núñez-Andrés MA, Lantada N, Prades A (2016) Comparison of photogrammetric techniques for rockfalls monitoring. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/44/4/042023 | es_ES |
dc.description.references | Coleman DJ, McLaughlin J (1998) Defining global geospatial data infrastructure (ggdi): components, stakeholders and interfaces. Geomatica 52:129–144 | es_ES |
dc.description.references | Corominas J, Matas G, Ruiz-Carulla R (2019) Quantitative analysis of risk from fragmental rockfalls. Landslides 16(1):5–21. https://doi.org/10.1007/s10346-018-1087-9 | es_ES |
dc.description.references | Council NR (1999) Reducing disaster losses through better information. The National Academies Press, Washington, DC | es_ES |
dc.description.references | European Parliament and of the Council: Directive 2007/2/EC of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Off. J. European Union L108, 14 (http://inspire.jrc.ec.europa.eu/). Accessed online | es_ES |
dc.description.references | Glade T, Anderson M, Crozier M (Eds) (2012) Landslide hazard and risk. John Wiley & Sons, New Jersey. https://doi.org/10.1002/9780470012659 | es_ES |
dc.description.references | González M, Pinyol J, Ramisa J et al. (2017) La base de datos de movimientos del terreno de Cataluña (LLISCAT): una herramienta para la gestión de los riesgos geológicos. In: X Simposio Nacional sobre Taludes y Laderas Inestables CINME, pp. 651–662 | es_ES |
dc.description.references | Gröger G, Plümer L (2012) CityGML-interoperable semantic 3D city models. ISPRS J Photogramm Remote Sens 71:12–33. https://doi.org/10.1016/j.isprsjprs.2012.04.004 | es_ES |
dc.description.references | Harrison M, Thomas F, Barredo J et al (2013) Data specification on natural risk zones-technical guidelines. Report: D2.8.III.12_v3, INSPIRE Data Specification on Natural Risk Zones e Technical Guidelines | es_ES |
dc.description.references | Herrera G, Mateos RM, García-Davalillo JC et al (2018) Landslide databases in the geological surveys of Europe. Landslides 15:359–379. https://doi.org/10.1007/s10346-017-0902-z | es_ES |
dc.description.references | Herrera G, Mateos RM, Carlos García-Davalillo JC et al (2017) Los movimientos de ladera en España: hacia una base de datos conjunta. In: Alonso E, Corominas J, Hürlimann M (eds) IX Simposio Nacional sobre Taludes y Laderas Inestables, CINME, pp. 663–673 | es_ES |
dc.description.references | Huabin W, Gangjun L, Weiya X, Gonghui W (2005) GIS-based landslide hazard assessment: an overview. Prog Phys Geogr 29:548–567 | es_ES |
dc.description.references | ICGC (2022) The geological Atlas of Catalonia. Institut Cartogràfic i Geològic de Catalunya, ICGC. https://www.icgc.cat/en/Citizens/Explore-Catalonia/Atlases/Geological-atlas-of-Catalonia. Accessed 16 January 2022 | es_ES |
dc.description.references | INSPIRE Thematic Working Group Natural Risk Zones, 2013. Data Specification on natural risk zones. D2.8.III.12, INSPIRE data specification on natural risk zones e technical guidelines. INSPIRE Directive 2007/2/EC. Accessed online. http://inspire.ec.europa.eu/id/document/tg/nz Accessed 7 July 2021 | es_ES |
dc.description.references | International Organization for Standarization (2006) ISO/TC 211. Geographic information/geomatics. Available online: http://www.isotc211.org Accessed 7 July 2021 | es_ES |
dc.description.references | Lantada N, Corominas J, Gili J.A, et al (2020) The RockModels project: rockfalls characterization and modelling. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20353, https://doi.org/10.5194/egusphere-egu2020-20353 | es_ES |
dc.description.references | Lei T, Zhang Y, Lv Z et al (2019) Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 16:982–986. https://doi.org/10.1109/LGRS.2018.2889307 | es_ES |
dc.description.references | Lv ZY, Shi W, Zhang X, Benediktsson JA (2018) Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 11:1520–1532. https://doi.org/10.1109/JSTARS.2018.2803784 | es_ES |
dc.description.references | Matas G, Lantada N, Corominas J et al (2017) RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides 14:1565–1578. https://doi.org/10.1007/s10346-017-0818-7 | es_ES |
dc.description.references | Matas G, Lantada N, Corominas J et al (2020) Simulation of full-scale rockfall tests with a fragmentation model. Geosciences 10(5):168. https://doi.org/10.3390/geosciences10050168 | es_ES |
dc.description.references | Mather AE, Griffiths JS, Stokes M (2003) Anatomy of a “fossil” landslide from the pleistocene of SE Spain. Geomorphology 50:135–149. https://doi.org/10.1016/S0169-555X(02)00211-8 | es_ES |
dc.description.references | Minerva Intelligence: Natural Hazard Category Landslide Extension, available online http://minerva.codes/codelist/NaturalHazardCategoryLandslideExtension Accessed 1 July 2021 | es_ES |
dc.description.references | Molina M, Bayarri S (2011) A multinational SDI-based system to facilitate disaster risk management in the Andean community. Comput Geosci 37:1501–1510. https://doi.org/10.1016/j.cageo.2011.01.015 | es_ES |
dc.description.references | Napolitano E, Marchesini I, Salvati P et al (2018) LAND-deFeND–an innovative database structure for landslides and floods and their consequences. J Environ Manag 207:203–218. https://doi.org/10.1016/j.jenvman.2017.11.022 | es_ES |
dc.description.references | Núñez-Andrés MA, Buill F, Puig-Polo C et al (2019) Comparison of several geomatic techniques for rockfall monitoring. In: Joint international symposium on deformation monitoring. pp. 1–7 | es_ES |
dc.description.references | Núñez-Andrés MA, Iniesto MJ, Ariza FJ et al (2021) Visualizadores IDE. In: Iniesto MJ, Núñez-Andrés MA (ed) Infraestructura de datos espaciales. Instituto Geográfico Nacional, Madrid, pp. 451–458. Doi: https://doi.org/10.7419/162.35.2020. Accessed 17 July 2021. | es_ES |
dc.description.references | Open Geospatial Consortium (2006) Web map server implementation specification. https://www.ogc.org/standards/wms. Accessed 7 July 2021. | es_ES |
dc.description.references | Open Geospatial Consortium (2007) Styled layer descriptor profile of the web map service. https://www.ogc.org/standards/sld. Accessed 7 July 2021. | es_ES |
dc.description.references | Oppikofer T, Nordahl B, Bunkholt H et al (2015) Database and online map service on unstable rock slopes in Norway-from data perpetuation to public information. Geomorphology 249:69–81. https://doi.org/10.1016/j.geomorph.2015.08.005 | es_ES |
dc.description.references | Pashova L, Bandrova T (2017) A brief overview of current status of European spatial data infrastructures−relevant developments and perspectives for Bulgaria. Geo-Spat Inf Sci 20:97–108. https://doi.org/10.1080/10095020.2017.1323524 | es_ES |
dc.description.references | Poslončec‐Petrić V, Bačić Ž (2014) Implementing INSPIRE in non‐EU countries based on learned lessons. In: INSPIRE 2014, conference. Aalborg | es_ES |
dc.description.references | Reichardt M (2010) Open standards-based geoprocessing web services support the study and management of hazard and risk. Geomat Nat Hazards Risk 1:171–184. https://doi.org/10.1080/19475701003643458 | es_ES |
dc.description.references | Riquelme A, López-Davalillo JC, Sarro R, et al (2017) Caracterización geomecánica del talud desprendido de Cortes de Pallás (Valencia) mediante structure from Motion (SfM) con imágenes adquiridas con Remotely piloted aircraft system (RPAS). In: Alonso E, Corominas J, Hürlimann M (eds) IX Simposio Nacional sobre Taludes y Laderas Inestables, CINME, pp. 545-556 | es_ES |
dc.description.references | Roberti G, McGregor J, Lam S et al (2020) INSPIRE standards as a framework for artificial intelligence applications: a landslide example. Nat Hazards Earth Syst Sci 20:3455–3483. https://doi.org/10.5194/nhess-20-3455-2020 | es_ES |
dc.description.references | Rosser B, Dellow S, Haubrock S, Glassey P (2017) New Zealand’s national landslide database. Landslides 14:1949–1959. https://doi.org/10.1007/s10346-017-0843-6 | es_ES |
dc.description.references | Ruiz-Carulla R, Corominas J, Mavrouli O (2015) A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides 12:815–825. https://doi.org/10.1007/s10346-015-0600-7 | es_ES |
dc.description.references | Ruiz-Carulla R, Corominas J, Mavrouli O (2017) A fractal fragmentation model for rockfalls. Landslides 14:875–889. https://doi.org/10.1007/s10346-016-0773-8 | es_ES |
dc.description.references | Ruiz-Carulla R, Corominas J (2021) Documenting rock mass failure with UAV during an emergency phase: Castell de Mur case study. In: Miguel Angel C, Luis Felipe PS, Juan M (eds) 13th International Symposium on Landslides. Accessed 15 July 2021 | es_ES |
dc.description.references | Ruiz-Carulla R (2018) Rockfall analysis: failure, fragmentation and propagation characterization: a fractal fragmentation of rockfalls. Doctoral thesis, UPC, Civil and Environmental Department. http://hdl.handle.net/2117/121044 | es_ES |
dc.description.references | Saha AK, Gupta RP, Sarkar I et al (2005) An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides 2:61–69 | es_ES |
dc.description.references | Saharia M, Jain A, Baishya RR et al (2021) India flood inventory: creation of a multi-source national geospatial database to facilitate comprehensive flood research. Nat Hazards 108:619–633. https://doi.org/10.1007/s11069-021-04698-6 | es_ES |
dc.description.references | Sarro R, Riquelme A, García-Davalillo JC et al (2018) Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: application at a cultural heritage site. Remote Sens 10(12):1923. https://doi.org/10.3390/rs10121923 | es_ES |
dc.description.references | Spencer JM, Ashley WS (2011) Avalanche fatalities in the western United States: a comparison of three databases. Nat Hazards 58:31–44. https://doi.org/10.1007/s11069-010-9641-3 | es_ES |
dc.description.references | Spreafico MC, Franci F, Bitelli G, Borgatti L, Ghirotti M (2017) Intact rock bridge breakage and rock mass fragmentation upon failure: quantification using remote sensing techniques. Photogramm Rec 32(160):513–536. https://doi.org/10.1111/phor.12225 | es_ES |
dc.description.references | Varnes D (1978) Transportation research board special report: slope movement types and processes. In: Schuster RL (ed) Landslides, analysis and control. National Academy of Sciences, Washington D.C., pp 11–33 | es_ES |
dc.description.references | Wirtz A, Kron W, Löw P, Steuer M (2014) The need for data: natural disasters and the challenges of database management. Nat Hazards 70:135–157. https://doi.org/10.1007/s11069-012-0312-4 | es_ES |
dc.description.references | Yu M, Yang C, Li Y (2018) Big data in natural disaster management: a review. Geosciences 8(5):165–191. https://doi.org/10.3390/geosciences8050165 | es_ES |