- -

Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Núñez-Andrés, M. Amparo es_ES
dc.contributor.author Lantada Zarzosa, Nieves es_ES
dc.contributor.author Martínez Llario, José Carlos es_ES
dc.date.accessioned 2023-10-06T18:01:24Z
dc.date.available 2023-10-06T18:01:24Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 0921-030X es_ES
dc.identifier.uri http://hdl.handle.net/10251/197846
dc.description.abstract [EN] The fragmentation phenomenon has a significant effect on rockfall risk assessment. This information is difficult to obtain, but it is key to improving rockfall modelling. For this reason, the RockModels team has gathered data on the fragmentation of several natural events since 2014 that nowadays wants to share them with professionals, academics and stakeholders. The best way for the dissemination of this information is the use of standard or data specifications in order to be interoperable. A fragmentation rockfall database has been created using all the gathered information, according to the INSPIRE Natural Hazard Area Data Specification currently in force. However, new tables have had to be added, since this specification does not consider fragmentation data. There are currently 6000 records of geometries of source areas, envelopes, deposits and mostly individual blocks. A web mapping application, with an automatic function for coordinate reference system transformation, has been created to facilitate access to the spatial database information. All that was developed on open-source software such as OpenLayers JavaScript library, database (PostGre-PostGIS) and the map generating Web Map Service (GeoServer). As more data are collected, the database can be easily updated and the new information will be published. Moreover, to improve data interpretation, a future task is to incorporate 3D models on the web application. The existence of this public database will facilitate research and advance in knowledge of this kind of natural hazards. [GRAPHICS] es_ES
dc.description.sponsorship Most of the data collected were funding by the Project "Rockfalls in cliffs: risk quantification and its prevention (RockRisk)" Ref. BIA2013-42582-P, funded by the Spanish Ministry of Economy and Competitiveness. The RockDB and WMS implementation were supported by Projects: "Characterization and modelling of rockfalls (RockModels)" Ref.BIA2016-75668-P (AEI/FEDER,UE), funded by the Ministerio de Ciencia e Innovacion (MCIN) co-funded by the Agencia Estatal de Investigation (AEI) and The European Regional Development Fund (ERDF or FEDER in Spanish) and the Project "Advances in rockfall quantitative risk analysis (QRA) incorporating developments in geomatics (GeoRisk)" with reference PID2019-103974RB-I00, funded by MCIN/AEI/10.13039/501100011033. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Natural Hazards es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Rockfall database es_ES
dc.subject Fragmentation data es_ES
dc.subject SDI es_ES
dc.subject Web mapping es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11069-022-05282-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103974RB-I00/ES/AVANCES EN EL ANALISIS DE LA CUANTIFICACION DEL RIESGO (QRA) POR DESPRENDIMIENTOS ROCOSOS EMPLEANDO AVANCES EN LAS TECNICAS GEOMATICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIA2016-75668-P/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2013-42582-P/ES/DESPRENDIMIENTOS EN ESCARPES ROCOSOS: CUANTIFICACION DEL RIESGO Y SU PREVENCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica es_ES
dc.description.bibliographicCitation Núñez-Andrés, MA.; Lantada Zarzosa, N.; Martínez Llario, JC. (2022). Spatial data infrastructure (SDI) for inventory rockfalls with fragmentation information. Natural Hazards. 112(3):2649-2672. https://doi.org/10.1007/s11069-022-05282-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11069-022-05282-2 es_ES
dc.description.upvformatpinicio 2649 es_ES
dc.description.upvformatpfin 2672 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 112 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\456220 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aye ZC, Olyazadeh R, Derron M-H et al (2017) Learning risk management of geohazards in practice with free and open-source web-GIS based platform: RISKGIS. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2017-85 es_ES
dc.description.references Blahut J, Poretti I, de Amicis M, Sterlacchini S (2012) Database of geo-hydrological disasters for civil protection purposes. Nat Hazards 60:1065–1083. https://doi.org/10.1007/s11069-011-9893-6 es_ES
dc.description.references Bobrowsky P (ed) (2013) Encyclopedia of natural hazards. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-4399-4 es_ES
dc.description.references Breunig M, Kuper PV, Butwilowski E et al (2016) The story of DB4GeO–a service-based geo-database architecture to support multi-dimensional data analysis and visualization. ISPRS J Photogramm Remote Sens 117:187–205. https://doi.org/10.1016/j.isprsjprs.2015.12.006 es_ES
dc.description.references Buill F, Núñez-Andrés MA, Lantada N, Prades A (2016) Comparison of photogrammetric techniques for rockfalls monitoring. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/44/4/042023 es_ES
dc.description.references Coleman DJ, McLaughlin J (1998) Defining global geospatial data infrastructure (ggdi): components, stakeholders and interfaces. Geomatica 52:129–144 es_ES
dc.description.references Corominas J, Matas G, Ruiz-Carulla R (2019) Quantitative analysis of risk from fragmental rockfalls. Landslides 16(1):5–21. https://doi.org/10.1007/s10346-018-1087-9 es_ES
dc.description.references Council NR (1999) Reducing disaster losses through better information. The National Academies Press, Washington, DC es_ES
dc.description.references European Parliament and of the Council: Directive 2007/2/EC of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Off. J. European Union L108, 14 (http://inspire.jrc.ec.europa.eu/). Accessed online es_ES
dc.description.references Glade T, Anderson M, Crozier M (Eds) (2012) Landslide hazard and risk. John Wiley & Sons, New Jersey. https://doi.org/10.1002/9780470012659 es_ES
dc.description.references González M, Pinyol J, Ramisa J et al. (2017) La base de datos de movimientos del terreno de Cataluña (LLISCAT): una herramienta para la gestión de los riesgos geológicos. In: X Simposio Nacional sobre Taludes y Laderas Inestables CINME, pp. 651–662 es_ES
dc.description.references Gröger G, Plümer L (2012) CityGML-interoperable semantic 3D city models. ISPRS J Photogramm Remote Sens 71:12–33. https://doi.org/10.1016/j.isprsjprs.2012.04.004 es_ES
dc.description.references Harrison M, Thomas F, Barredo J et al (2013) Data specification on natural risk zones-technical guidelines. Report: D2.8.III.12_v3, INSPIRE Data Specification on Natural Risk Zones e Technical Guidelines es_ES
dc.description.references Herrera G, Mateos RM, García-Davalillo JC et al (2018) Landslide databases in the geological surveys of Europe. Landslides 15:359–379. https://doi.org/10.1007/s10346-017-0902-z es_ES
dc.description.references Herrera G, Mateos RM, Carlos García-Davalillo JC et al (2017) Los movimientos de ladera en España: hacia una base de datos conjunta. In: Alonso E, Corominas J, Hürlimann M (eds) IX Simposio Nacional sobre Taludes y Laderas Inestables, CINME, pp. 663–673 es_ES
dc.description.references Huabin W, Gangjun L, Weiya X, Gonghui W (2005) GIS-based landslide hazard assessment: an overview. Prog Phys Geogr 29:548–567 es_ES
dc.description.references ICGC (2022) The geological Atlas of Catalonia. Institut Cartogràfic i Geològic de Catalunya, ICGC. https://www.icgc.cat/en/Citizens/Explore-Catalonia/Atlases/Geological-atlas-of-Catalonia. Accessed 16 January 2022 es_ES
dc.description.references INSPIRE Thematic Working Group Natural Risk Zones, 2013. Data Specification on natural risk zones. D2.8.III.12, INSPIRE data specification on natural risk zones e technical guidelines. INSPIRE Directive 2007/2/EC. Accessed online. http://inspire.ec.europa.eu/id/document/tg/nz Accessed 7 July 2021 es_ES
dc.description.references International Organization for Standarization (2006) ISO/TC 211. Geographic information/geomatics. Available online: http://www.isotc211.org Accessed 7 July 2021 es_ES
dc.description.references Lantada N, Corominas J, Gili J.A, et al (2020) The RockModels project: rockfalls characterization and modelling. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20353, https://doi.org/10.5194/egusphere-egu2020-20353 es_ES
dc.description.references Lei T, Zhang Y, Lv Z et al (2019) Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 16:982–986. https://doi.org/10.1109/LGRS.2018.2889307 es_ES
dc.description.references Lv ZY, Shi W, Zhang X, Benediktsson JA (2018) Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 11:1520–1532. https://doi.org/10.1109/JSTARS.2018.2803784 es_ES
dc.description.references Matas G, Lantada N, Corominas J et al (2017) RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides 14:1565–1578. https://doi.org/10.1007/s10346-017-0818-7 es_ES
dc.description.references Matas G, Lantada N, Corominas J et al (2020) Simulation of full-scale rockfall tests with a fragmentation model. Geosciences 10(5):168. https://doi.org/10.3390/geosciences10050168 es_ES
dc.description.references Mather AE, Griffiths JS, Stokes M (2003) Anatomy of a “fossil” landslide from the pleistocene of SE Spain. Geomorphology 50:135–149. https://doi.org/10.1016/S0169-555X(02)00211-8 es_ES
dc.description.references Minerva Intelligence: Natural Hazard Category Landslide Extension, available online http://minerva.codes/codelist/NaturalHazardCategoryLandslideExtension Accessed 1 July 2021 es_ES
dc.description.references Molina M, Bayarri S (2011) A multinational SDI-based system to facilitate disaster risk management in the Andean community. Comput Geosci 37:1501–1510. https://doi.org/10.1016/j.cageo.2011.01.015 es_ES
dc.description.references Napolitano E, Marchesini I, Salvati P et al (2018) LAND-deFeND–an innovative database structure for landslides and floods and their consequences. J Environ Manag 207:203–218. https://doi.org/10.1016/j.jenvman.2017.11.022 es_ES
dc.description.references Núñez-Andrés MA, Buill F, Puig-Polo C et al (2019) Comparison of several geomatic techniques for rockfall monitoring. In: Joint international symposium on deformation monitoring. pp. 1–7 es_ES
dc.description.references Núñez-Andrés MA, Iniesto MJ, Ariza FJ et al (2021) Visualizadores IDE. In: Iniesto MJ, Núñez-Andrés MA (ed) Infraestructura de datos espaciales. Instituto Geográfico Nacional, Madrid, pp. 451–458. Doi: https://doi.org/10.7419/162.35.2020. Accessed 17 July 2021. es_ES
dc.description.references Open Geospatial Consortium (2006) Web map server implementation specification. https://www.ogc.org/standards/wms. Accessed 7 July 2021. es_ES
dc.description.references Open Geospatial Consortium (2007) Styled layer descriptor profile of the web map service. https://www.ogc.org/standards/sld. Accessed 7 July 2021. es_ES
dc.description.references Oppikofer T, Nordahl B, Bunkholt H et al (2015) Database and online map service on unstable rock slopes in Norway-from data perpetuation to public information. Geomorphology 249:69–81. https://doi.org/10.1016/j.geomorph.2015.08.005 es_ES
dc.description.references Pashova L, Bandrova T (2017) A brief overview of current status of European spatial data infrastructures−relevant developments and perspectives for Bulgaria. Geo-Spat Inf Sci 20:97–108. https://doi.org/10.1080/10095020.2017.1323524 es_ES
dc.description.references Poslončec‐Petrić V, Bačić Ž (2014) Implementing INSPIRE in non‐EU countries based on learned lessons. In: INSPIRE 2014, conference. Aalborg es_ES
dc.description.references Reichardt M (2010) Open standards-based geoprocessing web services support the study and management of hazard and risk. Geomat Nat Hazards Risk 1:171–184. https://doi.org/10.1080/19475701003643458 es_ES
dc.description.references Riquelme A, López-Davalillo JC, Sarro R, et al (2017) Caracterización geomecánica del talud desprendido de Cortes de Pallás (Valencia) mediante structure from Motion (SfM) con imágenes adquiridas con Remotely piloted aircraft system (RPAS). In: Alonso E, Corominas J, Hürlimann M (eds) IX Simposio Nacional sobre Taludes y Laderas Inestables, CINME, pp. 545-556 es_ES
dc.description.references Roberti G, McGregor J, Lam S et al (2020) INSPIRE standards as a framework for artificial intelligence applications: a landslide example. Nat Hazards Earth Syst Sci 20:3455–3483. https://doi.org/10.5194/nhess-20-3455-2020 es_ES
dc.description.references Rosser B, Dellow S, Haubrock S, Glassey P (2017) New Zealand’s national landslide database. Landslides 14:1949–1959. https://doi.org/10.1007/s10346-017-0843-6 es_ES
dc.description.references Ruiz-Carulla R, Corominas J, Mavrouli O (2015) A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides 12:815–825. https://doi.org/10.1007/s10346-015-0600-7 es_ES
dc.description.references Ruiz-Carulla R, Corominas J, Mavrouli O (2017) A fractal fragmentation model for rockfalls. Landslides 14:875–889. https://doi.org/10.1007/s10346-016-0773-8 es_ES
dc.description.references Ruiz-Carulla R, Corominas J (2021) Documenting rock mass failure with UAV during an emergency phase: Castell de Mur case study. In: Miguel Angel C, Luis Felipe PS, Juan M (eds) 13th International Symposium on Landslides. Accessed 15 July 2021 es_ES
dc.description.references Ruiz-Carulla R (2018) Rockfall analysis: failure, fragmentation and propagation characterization: a fractal fragmentation of rockfalls. Doctoral thesis, UPC, Civil and Environmental Department. http://hdl.handle.net/2117/121044 es_ES
dc.description.references Saha AK, Gupta RP, Sarkar I et al (2005) An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides 2:61–69 es_ES
dc.description.references Saharia M, Jain A, Baishya RR et al (2021) India flood inventory: creation of a multi-source national geospatial database to facilitate comprehensive flood research. Nat Hazards 108:619–633. https://doi.org/10.1007/s11069-021-04698-6 es_ES
dc.description.references Sarro R, Riquelme A, García-Davalillo JC et al (2018) Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: application at a cultural heritage site. Remote Sens 10(12):1923. https://doi.org/10.3390/rs10121923 es_ES
dc.description.references Spencer JM, Ashley WS (2011) Avalanche fatalities in the western United States: a comparison of three databases. Nat Hazards 58:31–44. https://doi.org/10.1007/s11069-010-9641-3 es_ES
dc.description.references Spreafico MC, Franci F, Bitelli G, Borgatti L, Ghirotti M (2017) Intact rock bridge breakage and rock mass fragmentation upon failure: quantification using remote sensing techniques. Photogramm Rec 32(160):513–536. https://doi.org/10.1111/phor.12225 es_ES
dc.description.references Varnes D (1978) Transportation research board special report: slope movement types and processes. In: Schuster RL (ed) Landslides, analysis and control. National Academy of Sciences, Washington D.C., pp 11–33 es_ES
dc.description.references Wirtz A, Kron W, Löw P, Steuer M (2014) The need for data: natural disasters and the challenges of database management. Nat Hazards 70:135–157. https://doi.org/10.1007/s11069-012-0312-4 es_ES
dc.description.references Yu M, Yang C, Li Y (2018) Big data in natural disaster management: a review. Geosciences 8(5):165–191. https://doi.org/10.3390/geosciences8050165 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem