- -

Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mahmood, Mateen es_ES
dc.contributor.author Mateu, Jorge es_ES
dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.date.accessioned 2023-10-19T18:01:48Z
dc.date.available 2023-10-19T18:01:48Z
dc.date.issued 2022-03 es_ES
dc.identifier.issn 1436-3240 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198416
dc.description.abstract [EN] The current situation of COVID-19 highlights the paramount importance of infectious disease surveillance, which necessitates early monitoring for effective response. Policymakers are interested in data insights identifying high-risk areas as well as individuals to be quarantined, especially as the public gets back to their normal routine. We investigate both requirements by the implementation of disease outbreak modeling and exploring its induced dynamic spatial risk in form of risk assessment, along with its real-time integration back into the disease model. This paper implements a contact tracing-based stochastic compartment model as a baseline, to further modify the existing setup to include the spatial risk. This modification of each individual-level contact¿s intensity to be dependent on its spatial location has been termed as Contextual Contact Tracing. The results highlight that the inclusion of spatial context tends to send more individuals into quarantine which reduces the overall spread of infection. With a simulated example of an induced spatial high-risk, it is highlighted that the new spatio-SIR model can act as a tool to empower the analyst with a capability to explore disease dynamics from a spatial perspective. We conclude that the proposed spatio-SIR tool can be of great help for policymakers to know the consequences of their decision prior to their implementation. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Stochastic Environmental Research and Risk Assessment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Compartment modeling es_ES
dc.subject Contact tracing es_ES
dc.subject Digital epidemiology es_ES
dc.subject Human mobility es_ES
dc.subject Self organizing maps es_ES
dc.subject Trajectories es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00477-021-02065-2 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Mahmood, M.; Mateu, J.; Hernández-Orallo, E. (2022). Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment. Stochastic Environmental Research and Risk Assessment. 36(3):893-917. https://doi.org/10.1007/s00477-021-02065-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00477-021-02065-2 es_ES
dc.description.upvformatpinicio 893 es_ES
dc.description.upvformatpfin 917 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 34720737 es_ES
dc.identifier.pmcid PMC8547309 es_ES
dc.relation.pasarela S\448219 es_ES
dc.description.references Anglemyer A, Moore TH, Parker L, Chambers T, Grady A, Chiu K, Parry M, Wilczynska M, Flemyng E, Bero L (2020) Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database Syst Rev (8) es_ES
dc.description.references Angulo J, Yu HL, Langousis A, Kolovos A, Wang J, Madrid AE, Christakos G (2013) Spatiotemporal infectious disease modeling: a bme-sir approach. PloS one 8(9):e72,168(9):e72, 168 es_ES
dc.description.references Asan U, Ercan S (2012) An introduction to self-organizing maps. In: Computational intelligence systems in industrial engineering, Springer, pp 295–315 es_ES
dc.description.references Bação F, Lobo V, Painho M (2005) Self-organizing maps as substitutes for k-means clustering. In: International conference on computational science. Springer, pp 476–483 es_ES
dc.description.references Bardina X, Ferrante M, Rovira C (2020) A stochastic epidemic model of covid-19 disease. arXiv preprint arXiv:200502859 es_ES
dc.description.references Benreguia B, Moumen H, Merzoug MA (2020) Tracking covid-19 by tracking infectious trajectories. arXiv preprint arXiv:200505523 es_ES
dc.description.references Berger DW, Herkenhoff KF, Mongey S (2020) An seir infectious disease model with testing and conditional quarantine. Tech. rep, National Bureau of Economic Research es_ES
dc.description.references Bisin A, Moro A (2020) Learning epidemiology by doing: The empirical implications of a spatial-sir model with behavioral responses. Tech. rep, National Bureau of Economic Research es_ES
dc.description.references Brockmann D, David V, Gallardo AM (2009) Human mobility and spatial disease dynamics. Rev Nonlinear Dyn Complex 2:1–24 es_ES
dc.description.references Desjardins M, Hohl A, Delmelle E (2020) Rapid surveillance of covid-19 in the united states using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. Appl Geogr 102202 es_ES
dc.description.references Eames KT, Keeling MJ (2003) Contact tracing and disease control. Proc R Soc Lond B 270(1533):2565–2571 es_ES
dc.description.references Enright J, Kao RR (2018) Epidemics on dynamic networks. Epidemics 24:88–97 es_ES
dc.description.references Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dorner L, Parker M, Bonsall D, Fraser C (2020) Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science es_ES
dc.description.references Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361 es_ES
dc.description.references Gopal S (2016) Artificial neural networks in geospatial analysis. International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology, pp 1–7 es_ES
dc.description.references Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, Munday JD, Kucharski AJ, Edmunds WJ, Sun F, Flasche S, Quilty BJ, Davies N, Liu Y, Clifford S, Klepac P, Jit M, Diamond C, Gibbs H, van Zandvoort K, Funk S, Eggo RM (2020) Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. Lancet Glob Health 8(4):e488–e496 es_ES
dc.description.references Henriques R, Lobo V, Bação F (2012) Spatial clustering using hierarchical som. Applications of Self-Organizing Maps, pp 231–250 es_ES
dc.description.references Hernández-Orallo E, Manzoni P, Calafate CT, Cano JC (2020) Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: the case of covid-19. IEEE Access es_ES
dc.description.references Keeling MJ, Rohani P (2011) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton es_ES
dc.description.references Lang JC, De Sterck H, Kaiser JL, Miller JC (2018) Analytic models for sir disease spread on random spatial networks. J Complex Networks 6(6):948–970 es_ES
dc.description.references Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J (2020) Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2). Science es_ES
dc.description.references Mahsin M, Deardon R, Brown P (2020) Geographically dependent individual-level models for infectious diseases transmission. Biostatistics es_ES
dc.description.references Martinez-Beneito MA, Mateu J, Botella-Rocamora P (2020) Spatio-temporal small area surveillance of the covid-19 pandemics. arXiv preprint arXiv:201103938 es_ES
dc.description.references Martinez-Martin N, Wieten S, Magnus D, Cho MK (2020) Digital contact tracing, privacy, and public health. Hastings Cent Rep 50(3):43–46 es_ES
dc.description.references Müller M, Derlet PM, Mudry C, Aeppli G (2020) Testing of asymptomatic individuals for fast feedback-control of covid-19 pandemic. Phys Biol 17(6):065,007(6):065007 es_ES
dc.description.references Park J, Chang W, Choi B (2021) An interaction neyman-scott point process model for coronavirus disease-19. arXiv preprint arXiv:210202999 es_ES
dc.description.references Reichert L, Brack S, Scheuermann B (2020) Privacy-preserving contact tracing of covid-19 patients. IACR Cryptol ePrint Arch 2020:375 es_ES
dc.description.references Rezaei M, Azarmi M (2020) Deepsocial: Social distancing monitoring and infection risk assessment in covid-19 pandemic. Appl Sci 10(21):7514 es_ES
dc.description.references Salathé M (2018) Digital epidemiology: what is it, and where is it going? Life Sci Soc Policy 14(1):1 es_ES
dc.description.references Simmerman JM, Suntarattiwong P, Levy J, Gibbons RV, Cruz C, Shaman J, Jarman RG, Chotpitayasunondh T (2010) Influenza a Virus Contamination of Common Household Surfaces during the 2009 Influenza A (H1N1) Pandemic in Bangkok, Thailand: Implications for Contact Transmission. Clin Infect Diseases 51(9):1053–1061 es_ES
dc.description.references Souza RC, Neill DB, Assunção RM, Meira W (2019) Identifying high-risk areas for dengue infection using mobility patterns on twitter. Online J Public Health Inform 11(1) es_ES
dc.description.references Takács B, Hadjimichael Y (2019) High order discretization methods for spatial dependent sir models. arXiv preprint arXiv:190901330 es_ES
dc.description.references Tsai TC, Chan HH (2015) Nccu trace: Social-network-aware mobility trace. IEEE Commun Mag 53(10):144–149 es_ES
dc.description.references Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI et al (2020) Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. N Engl J Med 382(16):1564–1567 es_ES
dc.description.references Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Networks 11(3):586–600 es_ES
dc.description.references Wang P, Fu Y, Liu G, Hu W, Aggarwal C (2017) Human mobility synchronization and trip purpose detection with mixture of hawkes processes. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 495–503 es_ES
dc.description.references WHO (2021) WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/ es_ES
dc.description.references Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol (TIST) 6(3):1–41 es_ES
dc.description.references Zheng Y, Fu H, Xie X, Ma W, Li Q (2011) Geolife gps trajectory dataset-user guide. microsoft research es_ES
dc.description.references Zhou C, Yuan W, Wang J, Xu H, Jiang Y, Wang X, Wen QH, Zhang P (2020) Detecting suspected epidemic cases using trajectory big data. arXiv preprint arXiv:200400908 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem