Mostrar el registro sencillo del ítem
dc.contributor.author | Mahmood, Mateen | es_ES |
dc.contributor.author | Mateu, Jorge | es_ES |
dc.contributor.author | Hernández-Orallo, Enrique | es_ES |
dc.date.accessioned | 2023-10-19T18:01:48Z | |
dc.date.available | 2023-10-19T18:01:48Z | |
dc.date.issued | 2022-03 | es_ES |
dc.identifier.issn | 1436-3240 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198416 | |
dc.description.abstract | [EN] The current situation of COVID-19 highlights the paramount importance of infectious disease surveillance, which necessitates early monitoring for effective response. Policymakers are interested in data insights identifying high-risk areas as well as individuals to be quarantined, especially as the public gets back to their normal routine. We investigate both requirements by the implementation of disease outbreak modeling and exploring its induced dynamic spatial risk in form of risk assessment, along with its real-time integration back into the disease model. This paper implements a contact tracing-based stochastic compartment model as a baseline, to further modify the existing setup to include the spatial risk. This modification of each individual-level contact¿s intensity to be dependent on its spatial location has been termed as Contextual Contact Tracing. The results highlight that the inclusion of spatial context tends to send more individuals into quarantine which reduces the overall spread of infection. With a simulated example of an induced spatial high-risk, it is highlighted that the new spatio-SIR model can act as a tool to empower the analyst with a capability to explore disease dynamics from a spatial perspective. We conclude that the proposed spatio-SIR tool can be of great help for policymakers to know the consequences of their decision prior to their implementation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Stochastic Environmental Research and Risk Assessment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Compartment modeling | es_ES |
dc.subject | Contact tracing | es_ES |
dc.subject | Digital epidemiology | es_ES |
dc.subject | Human mobility | es_ES |
dc.subject | Self organizing maps | es_ES |
dc.subject | Trajectories | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00477-021-02065-2 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Mahmood, M.; Mateu, J.; Hernández-Orallo, E. (2022). Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment. Stochastic Environmental Research and Risk Assessment. 36(3):893-917. https://doi.org/10.1007/s00477-021-02065-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00477-021-02065-2 | es_ES |
dc.description.upvformatpinicio | 893 | es_ES |
dc.description.upvformatpfin | 917 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 34720737 | es_ES |
dc.identifier.pmcid | PMC8547309 | es_ES |
dc.relation.pasarela | S\448219 | es_ES |
dc.description.references | Anglemyer A, Moore TH, Parker L, Chambers T, Grady A, Chiu K, Parry M, Wilczynska M, Flemyng E, Bero L (2020) Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database Syst Rev (8) | es_ES |
dc.description.references | Angulo J, Yu HL, Langousis A, Kolovos A, Wang J, Madrid AE, Christakos G (2013) Spatiotemporal infectious disease modeling: a bme-sir approach. PloS one 8(9):e72,168(9):e72, 168 | es_ES |
dc.description.references | Asan U, Ercan S (2012) An introduction to self-organizing maps. In: Computational intelligence systems in industrial engineering, Springer, pp 295–315 | es_ES |
dc.description.references | Bação F, Lobo V, Painho M (2005) Self-organizing maps as substitutes for k-means clustering. In: International conference on computational science. Springer, pp 476–483 | es_ES |
dc.description.references | Bardina X, Ferrante M, Rovira C (2020) A stochastic epidemic model of covid-19 disease. arXiv preprint arXiv:200502859 | es_ES |
dc.description.references | Benreguia B, Moumen H, Merzoug MA (2020) Tracking covid-19 by tracking infectious trajectories. arXiv preprint arXiv:200505523 | es_ES |
dc.description.references | Berger DW, Herkenhoff KF, Mongey S (2020) An seir infectious disease model with testing and conditional quarantine. Tech. rep, National Bureau of Economic Research | es_ES |
dc.description.references | Bisin A, Moro A (2020) Learning epidemiology by doing: The empirical implications of a spatial-sir model with behavioral responses. Tech. rep, National Bureau of Economic Research | es_ES |
dc.description.references | Brockmann D, David V, Gallardo AM (2009) Human mobility and spatial disease dynamics. Rev Nonlinear Dyn Complex 2:1–24 | es_ES |
dc.description.references | Desjardins M, Hohl A, Delmelle E (2020) Rapid surveillance of covid-19 in the united states using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. Appl Geogr 102202 | es_ES |
dc.description.references | Eames KT, Keeling MJ (2003) Contact tracing and disease control. Proc R Soc Lond B 270(1533):2565–2571 | es_ES |
dc.description.references | Enright J, Kao RR (2018) Epidemics on dynamic networks. Epidemics 24:88–97 | es_ES |
dc.description.references | Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dorner L, Parker M, Bonsall D, Fraser C (2020) Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science | es_ES |
dc.description.references | Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361 | es_ES |
dc.description.references | Gopal S (2016) Artificial neural networks in geospatial analysis. International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology, pp 1–7 | es_ES |
dc.description.references | Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, Munday JD, Kucharski AJ, Edmunds WJ, Sun F, Flasche S, Quilty BJ, Davies N, Liu Y, Clifford S, Klepac P, Jit M, Diamond C, Gibbs H, van Zandvoort K, Funk S, Eggo RM (2020) Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. Lancet Glob Health 8(4):e488–e496 | es_ES |
dc.description.references | Henriques R, Lobo V, Bação F (2012) Spatial clustering using hierarchical som. Applications of Self-Organizing Maps, pp 231–250 | es_ES |
dc.description.references | Hernández-Orallo E, Manzoni P, Calafate CT, Cano JC (2020) Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: the case of covid-19. IEEE Access | es_ES |
dc.description.references | Keeling MJ, Rohani P (2011) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton | es_ES |
dc.description.references | Lang JC, De Sterck H, Kaiser JL, Miller JC (2018) Analytic models for sir disease spread on random spatial networks. J Complex Networks 6(6):948–970 | es_ES |
dc.description.references | Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J (2020) Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2). Science | es_ES |
dc.description.references | Mahsin M, Deardon R, Brown P (2020) Geographically dependent individual-level models for infectious diseases transmission. Biostatistics | es_ES |
dc.description.references | Martinez-Beneito MA, Mateu J, Botella-Rocamora P (2020) Spatio-temporal small area surveillance of the covid-19 pandemics. arXiv preprint arXiv:201103938 | es_ES |
dc.description.references | Martinez-Martin N, Wieten S, Magnus D, Cho MK (2020) Digital contact tracing, privacy, and public health. Hastings Cent Rep 50(3):43–46 | es_ES |
dc.description.references | Müller M, Derlet PM, Mudry C, Aeppli G (2020) Testing of asymptomatic individuals for fast feedback-control of covid-19 pandemic. Phys Biol 17(6):065,007(6):065007 | es_ES |
dc.description.references | Park J, Chang W, Choi B (2021) An interaction neyman-scott point process model for coronavirus disease-19. arXiv preprint arXiv:210202999 | es_ES |
dc.description.references | Reichert L, Brack S, Scheuermann B (2020) Privacy-preserving contact tracing of covid-19 patients. IACR Cryptol ePrint Arch 2020:375 | es_ES |
dc.description.references | Rezaei M, Azarmi M (2020) Deepsocial: Social distancing monitoring and infection risk assessment in covid-19 pandemic. Appl Sci 10(21):7514 | es_ES |
dc.description.references | Salathé M (2018) Digital epidemiology: what is it, and where is it going? Life Sci Soc Policy 14(1):1 | es_ES |
dc.description.references | Simmerman JM, Suntarattiwong P, Levy J, Gibbons RV, Cruz C, Shaman J, Jarman RG, Chotpitayasunondh T (2010) Influenza a Virus Contamination of Common Household Surfaces during the 2009 Influenza A (H1N1) Pandemic in Bangkok, Thailand: Implications for Contact Transmission. Clin Infect Diseases 51(9):1053–1061 | es_ES |
dc.description.references | Souza RC, Neill DB, Assunção RM, Meira W (2019) Identifying high-risk areas for dengue infection using mobility patterns on twitter. Online J Public Health Inform 11(1) | es_ES |
dc.description.references | Takács B, Hadjimichael Y (2019) High order discretization methods for spatial dependent sir models. arXiv preprint arXiv:190901330 | es_ES |
dc.description.references | Tsai TC, Chan HH (2015) Nccu trace: Social-network-aware mobility trace. IEEE Commun Mag 53(10):144–149 | es_ES |
dc.description.references | Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI et al (2020) Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. N Engl J Med 382(16):1564–1567 | es_ES |
dc.description.references | Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Networks 11(3):586–600 | es_ES |
dc.description.references | Wang P, Fu Y, Liu G, Hu W, Aggarwal C (2017) Human mobility synchronization and trip purpose detection with mixture of hawkes processes. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 495–503 | es_ES |
dc.description.references | WHO (2021) WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/ | es_ES |
dc.description.references | Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol (TIST) 6(3):1–41 | es_ES |
dc.description.references | Zheng Y, Fu H, Xie X, Ma W, Li Q (2011) Geolife gps trajectory dataset-user guide. microsoft research | es_ES |
dc.description.references | Zhou C, Yuan W, Wang J, Xu H, Jiang Y, Wang X, Wen QH, Zhang P (2020) Detecting suspected epidemic cases using trajectory big data. arXiv preprint arXiv:200400908 | es_ES |