- -

New results on the sign of the Green function of a two-point n-th order linear boundary value problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New results on the sign of the Green function of a two-point n-th order linear boundary value problem

Mostrar el registro completo del ítem

Almenar-Belenguer, P.; Jódar Sánchez, LA. (2022). New results on the sign of the Green function of a two-point n-th order linear boundary value problem. Boundary Value Problems. 1-22. https://doi.org/10.1186/s13661-022-01631-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/198422

Ficheros en el ítem

Metadatos del ítem

Título: New results on the sign of the Green function of a two-point n-th order linear boundary value problem
Autor: Almenar-Belenguer, Pedro Jódar Sánchez, Lucas Antonio
Entidad UPV: Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses
Fecha difusión:
Resumen:
[EN] This paper provides conditions for determining the sign of all the partial derivatives of the Green functions of n-th order boundary value problems subject to a wide set of homogeneous two-point boundary conditions, ...[+]
Palabras clave: N-th order linear differential equation , Two-point boundary value problem , Green function , Hyperdisfocality
Derechos de uso: Reconocimiento (by)
Fuente:
Boundary Value Problems. (issn: 1687-2762 )
DOI: 10.1186/s13661-022-01631-z
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s13661-022-01631-z
Coste APC: 1700
Tipo: Artículo

References

Elias, U.: Oscillation Theory of Two-Term Differential Equations. Kluwer, Dordrecht (1997)

Almenar, P., Jódar, L.: The sign of the Green function of an nth order linear boundary value problem. Mathematics 8(5), 673 (2020). https://doi.org/10.3390/math8050673

Coppel, W.A.: Disconjugacy. Springer, Berlin (1971) [+]
Elias, U.: Oscillation Theory of Two-Term Differential Equations. Kluwer, Dordrecht (1997)

Almenar, P., Jódar, L.: The sign of the Green function of an nth order linear boundary value problem. Mathematics 8(5), 673 (2020). https://doi.org/10.3390/math8050673

Coppel, W.A.: Disconjugacy. Springer, Berlin (1971)

Eloe, P.W., Hankerson, D., Henderson, J.: Positive solutions and conjugate points for multipoint boundary value problems. J. Differ. Equ. 95, 20–32 (1992)

Eloe, P.W., Henderson, J.: Focal point characterizations and comparisons for right focal differential operators. J. Math. Anal. Appl. 181, 22–34 (1994)

Webb, J.R.L.: Estimates of eigenvalues of linear operators associated with nonlinear boundary value problems. Dyn. Syst. Appl. 23, 415–430 (2014)

Almenar, P., Jódar, L.: Estimation of the smallest eigenvalue of an nth order linear boundary value problem. Math. Methods Appl. Sci. 44, 4491–4514 (2021). https://doi.org/10.1002/mma.7047

Almenar, P., Jódar, L.: The principal eigenvalue of some nth order linear boundary value problems. Bound. Value Probl. 2021, Article ID 84 (2021). https://doi.org/10.1186/s13661-021-01561-2

Almenar, P., Jódar, L.: Accurate estimations of any eigenpairs of n-th order linear boundary value problems. Mathematics 21, 2663 (2021). https://doi.org/10.3390/math9212663

Krein, M.G., Rutman, M.A.: Linear Operators Leaving Invariant a Cone in a Banach Space. Am. Math. Soc., New York (1950)

Erbe, L.H.: Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems. Math. Comput. Model. 32(5–6), 529–539 (2000)

Webb, J.R.L., Lan, K.Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27, 91–116 (2006)

Lan, K.Q.: Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems. Nonlinear Anal. 71(12), 5979–5993 (2009)

Webb, J.R.L.: A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 39, 221–242 (2012)

Ciancaruso, F.: Existence of solutions of semilinear systems with gradient dependence via eigenvalue criteria. J. Math. Anal. Appl. 482(1), 1–22 (2020). https://doi.org/10.1016/j.jmaa.2019.123547

Levin, A.J.: Some problems bearing on the oscillation of solutions of linear differential equations. Sov. Math. Dokl. 4, 121–124 (1963)

Pokornyi, J.V.: Some estimates of the Green’s function of a multi-point boundary value problem. Mat. Zametki 4, 533–540 (1968)

Karlin, S.: Total positivity, interpolation by splines and Green’s functions for ordinary differential equations. J. Approx. Theory 4(1), 91–112 (1971)

Peterson, A.: On the sign of Green’s functions. J. Differ. Equ. 21, 167–178 (1976)

Peterson, A.: Green’s functions for focal type boundary value problems. Rocky Mt. J. Math. 9(4), 721–732 (1979)

Elias, U.: Green’s functions for a non-disconjugate differential operator. J. Differ. Equ. 37, 318–350 (1980)

Peterson, A., Ridenhour, J.: Comparison theorems for Green’s functions for focal boundary value problems. In: Agarwal, R.P. (ed.) Recent Trends in Differential Equations. World Scientific Series in Applicable Analysis, vol. 1, pp. 493–506. World Scientific, Singapore (1992)

Eloe, P.W., Ridenhour, J.: Sign properties of Green’s functions for a family of two-point boundary value problems. Proc. Am. Math. Soc. 120(2), 443–452 (1994)

Webb, J.R.L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74(2), 673–693 (2006). https://doi.org/10.1112/S0024610706023179

Webb, J.R.L., Infante, G.: Nonlocal boundary value problems of arbitrary order. J. Lond. Math. Soc. 79(1), 238–258 (2009). https://doi.org/10.1112/jlms/jdn066

Cabada, A., Saavedra, L.: The eigenvalue characterization for the constant sign Green’s functions of $(k,n-k)$ problems. Bound. Value Probl. 44, 1–35 (2016). https://doi.org/10.1186/s13661-016-0547-1

Nehari, Z.: Disconjugate linear differential operators. Trans. Am. Math. Soc. 129(3), 500–516 (1967)

Hartman, P.: Ordinary Differential Equations. Birkhäuser, Boston (1982)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem