- -

New results on the sign of the Green function of a two-point n-th order linear boundary value problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New results on the sign of the Green function of a two-point n-th order linear boundary value problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Almenar-Belenguer, Pedro es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2023-10-19T18:02:05Z
dc.date.available 2023-10-19T18:02:05Z
dc.date.issued 2022-07-26 es_ES
dc.identifier.issn 1687-2762 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198422
dc.description.abstract [EN] This paper provides conditions for determining the sign of all the partial derivatives of the Green functions of n-th order boundary value problems subject to a wide set of homogeneous two-point boundary conditions, removing restrictions of previous results about the distance between the two extremes that define the problem. To do so, it analyzes the sign of the derivatives of the solutions of related two-point n-th order boundary value problems subject to n ¿ 1 boundary conditions by introducing a new property denoted by `hyperdisfocality¿ es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Boundary Value Problems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject N-th order linear differential equation es_ES
dc.subject Two-point boundary value problem es_ES
dc.subject Green function es_ES
dc.subject Hyperdisfocality es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title New results on the sign of the Green function of a two-point n-th order linear boundary value problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13661-022-01631-z es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Almenar-Belenguer, P.; Jódar Sánchez, LA. (2022). New results on the sign of the Green function of a two-point n-th order linear boundary value problem. Boundary Value Problems. 1-22. https://doi.org/10.1186/s13661-022-01631-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13661-022-01631-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\486158 es_ES
dc.description.references Elias, U.: Oscillation Theory of Two-Term Differential Equations. Kluwer, Dordrecht (1997) es_ES
dc.description.references Almenar, P., Jódar, L.: The sign of the Green function of an nth order linear boundary value problem. Mathematics 8(5), 673 (2020). https://doi.org/10.3390/math8050673 es_ES
dc.description.references Coppel, W.A.: Disconjugacy. Springer, Berlin (1971) es_ES
dc.description.references Eloe, P.W., Hankerson, D., Henderson, J.: Positive solutions and conjugate points for multipoint boundary value problems. J. Differ. Equ. 95, 20–32 (1992) es_ES
dc.description.references Eloe, P.W., Henderson, J.: Focal point characterizations and comparisons for right focal differential operators. J. Math. Anal. Appl. 181, 22–34 (1994) es_ES
dc.description.references Webb, J.R.L.: Estimates of eigenvalues of linear operators associated with nonlinear boundary value problems. Dyn. Syst. Appl. 23, 415–430 (2014) es_ES
dc.description.references Almenar, P., Jódar, L.: Estimation of the smallest eigenvalue of an nth order linear boundary value problem. Math. Methods Appl. Sci. 44, 4491–4514 (2021). https://doi.org/10.1002/mma.7047 es_ES
dc.description.references Almenar, P., Jódar, L.: The principal eigenvalue of some nth order linear boundary value problems. Bound. Value Probl. 2021, Article ID 84 (2021). https://doi.org/10.1186/s13661-021-01561-2 es_ES
dc.description.references Almenar, P., Jódar, L.: Accurate estimations of any eigenpairs of n-th order linear boundary value problems. Mathematics 21, 2663 (2021). https://doi.org/10.3390/math9212663 es_ES
dc.description.references Krein, M.G., Rutman, M.A.: Linear Operators Leaving Invariant a Cone in a Banach Space. Am. Math. Soc., New York (1950) es_ES
dc.description.references Erbe, L.H.: Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems. Math. Comput. Model. 32(5–6), 529–539 (2000) es_ES
dc.description.references Webb, J.R.L., Lan, K.Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27, 91–116 (2006) es_ES
dc.description.references Lan, K.Q.: Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems. Nonlinear Anal. 71(12), 5979–5993 (2009) es_ES
dc.description.references Webb, J.R.L.: A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 39, 221–242 (2012) es_ES
dc.description.references Ciancaruso, F.: Existence of solutions of semilinear systems with gradient dependence via eigenvalue criteria. J. Math. Anal. Appl. 482(1), 1–22 (2020). https://doi.org/10.1016/j.jmaa.2019.123547 es_ES
dc.description.references Levin, A.J.: Some problems bearing on the oscillation of solutions of linear differential equations. Sov. Math. Dokl. 4, 121–124 (1963) es_ES
dc.description.references Pokornyi, J.V.: Some estimates of the Green’s function of a multi-point boundary value problem. Mat. Zametki 4, 533–540 (1968) es_ES
dc.description.references Karlin, S.: Total positivity, interpolation by splines and Green’s functions for ordinary differential equations. J. Approx. Theory 4(1), 91–112 (1971) es_ES
dc.description.references Peterson, A.: On the sign of Green’s functions. J. Differ. Equ. 21, 167–178 (1976) es_ES
dc.description.references Peterson, A.: Green’s functions for focal type boundary value problems. Rocky Mt. J. Math. 9(4), 721–732 (1979) es_ES
dc.description.references Elias, U.: Green’s functions for a non-disconjugate differential operator. J. Differ. Equ. 37, 318–350 (1980) es_ES
dc.description.references Peterson, A., Ridenhour, J.: Comparison theorems for Green’s functions for focal boundary value problems. In: Agarwal, R.P. (ed.) Recent Trends in Differential Equations. World Scientific Series in Applicable Analysis, vol. 1, pp. 493–506. World Scientific, Singapore (1992) es_ES
dc.description.references Eloe, P.W., Ridenhour, J.: Sign properties of Green’s functions for a family of two-point boundary value problems. Proc. Am. Math. Soc. 120(2), 443–452 (1994) es_ES
dc.description.references Webb, J.R.L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74(2), 673–693 (2006). https://doi.org/10.1112/S0024610706023179 es_ES
dc.description.references Webb, J.R.L., Infante, G.: Nonlocal boundary value problems of arbitrary order. J. Lond. Math. Soc. 79(1), 238–258 (2009). https://doi.org/10.1112/jlms/jdn066 es_ES
dc.description.references Cabada, A., Saavedra, L.: The eigenvalue characterization for the constant sign Green’s functions of $(k,n-k)$ problems. Bound. Value Probl. 44, 1–35 (2016). https://doi.org/10.1186/s13661-016-0547-1 es_ES
dc.description.references Nehari, Z.: Disconjugate linear differential operators. Trans. Am. Math. Soc. 129(3), 500–516 (1967) es_ES
dc.description.references Hartman, P.: Ordinary Differential Equations. Birkhäuser, Boston (1982) es_ES
upv.costeAPC 1700 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem