Mostrar el registro sencillo del ítem
dc.contributor.author | Almenar-Belenguer, Pedro | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2023-10-19T18:02:05Z | |
dc.date.available | 2023-10-19T18:02:05Z | |
dc.date.issued | 2022-07-26 | es_ES |
dc.identifier.issn | 1687-2762 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198422 | |
dc.description.abstract | [EN] This paper provides conditions for determining the sign of all the partial derivatives of the Green functions of n-th order boundary value problems subject to a wide set of homogeneous two-point boundary conditions, removing restrictions of previous results about the distance between the two extremes that define the problem. To do so, it analyzes the sign of the derivatives of the solutions of related two-point n-th order boundary value problems subject to n ¿ 1 boundary conditions by introducing a new property denoted by `hyperdisfocality¿ | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | Boundary Value Problems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | N-th order linear differential equation | es_ES |
dc.subject | Two-point boundary value problem | es_ES |
dc.subject | Green function | es_ES |
dc.subject | Hyperdisfocality | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | New results on the sign of the Green function of a two-point n-th order linear boundary value problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13661-022-01631-z | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Almenar-Belenguer, P.; Jódar Sánchez, LA. (2022). New results on the sign of the Green function of a two-point n-th order linear boundary value problem. Boundary Value Problems. 1-22. https://doi.org/10.1186/s13661-022-01631-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13661-022-01631-z | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\486158 | es_ES |
dc.description.references | Elias, U.: Oscillation Theory of Two-Term Differential Equations. Kluwer, Dordrecht (1997) | es_ES |
dc.description.references | Almenar, P., Jódar, L.: The sign of the Green function of an nth order linear boundary value problem. Mathematics 8(5), 673 (2020). https://doi.org/10.3390/math8050673 | es_ES |
dc.description.references | Coppel, W.A.: Disconjugacy. Springer, Berlin (1971) | es_ES |
dc.description.references | Eloe, P.W., Hankerson, D., Henderson, J.: Positive solutions and conjugate points for multipoint boundary value problems. J. Differ. Equ. 95, 20–32 (1992) | es_ES |
dc.description.references | Eloe, P.W., Henderson, J.: Focal point characterizations and comparisons for right focal differential operators. J. Math. Anal. Appl. 181, 22–34 (1994) | es_ES |
dc.description.references | Webb, J.R.L.: Estimates of eigenvalues of linear operators associated with nonlinear boundary value problems. Dyn. Syst. Appl. 23, 415–430 (2014) | es_ES |
dc.description.references | Almenar, P., Jódar, L.: Estimation of the smallest eigenvalue of an nth order linear boundary value problem. Math. Methods Appl. Sci. 44, 4491–4514 (2021). https://doi.org/10.1002/mma.7047 | es_ES |
dc.description.references | Almenar, P., Jódar, L.: The principal eigenvalue of some nth order linear boundary value problems. Bound. Value Probl. 2021, Article ID 84 (2021). https://doi.org/10.1186/s13661-021-01561-2 | es_ES |
dc.description.references | Almenar, P., Jódar, L.: Accurate estimations of any eigenpairs of n-th order linear boundary value problems. Mathematics 21, 2663 (2021). https://doi.org/10.3390/math9212663 | es_ES |
dc.description.references | Krein, M.G., Rutman, M.A.: Linear Operators Leaving Invariant a Cone in a Banach Space. Am. Math. Soc., New York (1950) | es_ES |
dc.description.references | Erbe, L.H.: Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems. Math. Comput. Model. 32(5–6), 529–539 (2000) | es_ES |
dc.description.references | Webb, J.R.L., Lan, K.Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27, 91–116 (2006) | es_ES |
dc.description.references | Lan, K.Q.: Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems. Nonlinear Anal. 71(12), 5979–5993 (2009) | es_ES |
dc.description.references | Webb, J.R.L.: A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 39, 221–242 (2012) | es_ES |
dc.description.references | Ciancaruso, F.: Existence of solutions of semilinear systems with gradient dependence via eigenvalue criteria. J. Math. Anal. Appl. 482(1), 1–22 (2020). https://doi.org/10.1016/j.jmaa.2019.123547 | es_ES |
dc.description.references | Levin, A.J.: Some problems bearing on the oscillation of solutions of linear differential equations. Sov. Math. Dokl. 4, 121–124 (1963) | es_ES |
dc.description.references | Pokornyi, J.V.: Some estimates of the Green’s function of a multi-point boundary value problem. Mat. Zametki 4, 533–540 (1968) | es_ES |
dc.description.references | Karlin, S.: Total positivity, interpolation by splines and Green’s functions for ordinary differential equations. J. Approx. Theory 4(1), 91–112 (1971) | es_ES |
dc.description.references | Peterson, A.: On the sign of Green’s functions. J. Differ. Equ. 21, 167–178 (1976) | es_ES |
dc.description.references | Peterson, A.: Green’s functions for focal type boundary value problems. Rocky Mt. J. Math. 9(4), 721–732 (1979) | es_ES |
dc.description.references | Elias, U.: Green’s functions for a non-disconjugate differential operator. J. Differ. Equ. 37, 318–350 (1980) | es_ES |
dc.description.references | Peterson, A., Ridenhour, J.: Comparison theorems for Green’s functions for focal boundary value problems. In: Agarwal, R.P. (ed.) Recent Trends in Differential Equations. World Scientific Series in Applicable Analysis, vol. 1, pp. 493–506. World Scientific, Singapore (1992) | es_ES |
dc.description.references | Eloe, P.W., Ridenhour, J.: Sign properties of Green’s functions for a family of two-point boundary value problems. Proc. Am. Math. Soc. 120(2), 443–452 (1994) | es_ES |
dc.description.references | Webb, J.R.L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74(2), 673–693 (2006). https://doi.org/10.1112/S0024610706023179 | es_ES |
dc.description.references | Webb, J.R.L., Infante, G.: Nonlocal boundary value problems of arbitrary order. J. Lond. Math. Soc. 79(1), 238–258 (2009). https://doi.org/10.1112/jlms/jdn066 | es_ES |
dc.description.references | Cabada, A., Saavedra, L.: The eigenvalue characterization for the constant sign Green’s functions of $(k,n-k)$ problems. Bound. Value Probl. 44, 1–35 (2016). https://doi.org/10.1186/s13661-016-0547-1 | es_ES |
dc.description.references | Nehari, Z.: Disconjugate linear differential operators. Trans. Am. Math. Soc. 129(3), 500–516 (1967) | es_ES |
dc.description.references | Hartman, P.: Ordinary Differential Equations. Birkhäuser, Boston (1982) | es_ES |
upv.costeAPC | 1700 | es_ES |