Mostrar el registro sencillo del ítem
dc.contributor.author | Ghasemi, Reza | es_ES |
dc.contributor.author | Morillas, Samuel | es_ES |
dc.contributor.author | Nezakati, Ahmad | es_ES |
dc.contributor.author | Rabiei, Mohammadreza | es_ES |
dc.date.accessioned | 2023-11-07T19:02:44Z | |
dc.date.available | 2023-11-07T19:02:44Z | |
dc.date.issued | 2022-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199458 | |
dc.description.abstract | [EN] Removing or reducing noise in color images is one of the most important functions of image processing, which is used in many sciences. In many cases, nonlinear methods significantly reduce the noise in the image and are widely used today. One of these methods is the use of fuzzy logic. In this paper, we want to introduce a fuzzy filter by using the fuzzy metric for fuzzy sets. For this purpose, we define fuzzy color pixels by using the mean of neighborhoods. Due to the noise in the image, we use the bootstrap resampling method to reduce the effect of outliers. The concept of the strong law of large numbers for the bootstrap mean in fuzzy metric space helps us to use the resampling method. | es_ES |
dc.description.sponsorship | Samuel Morillas acknowledges the support of the Generalitat Valenciana under Grant AICO2020-136. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fuzzy metric space | es_ES |
dc.subject | Image processing | es_ES |
dc.subject | Fuzzy filter | es_ES |
dc.subject | Noise reduction | es_ES |
dc.subject | Bootstrap resampling | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Image Noise Reduction by Means of Bootstrapping-Based Fuzzy Numbers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app12199445 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO-2020-136/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Ghasemi, R.; Morillas, S.; Nezakati, A.; Rabiei, M. (2022). Image Noise Reduction by Means of Bootstrapping-Based Fuzzy Numbers. Applied Sciences. 12(19):1-14. https://doi.org/10.3390/app12199445 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app12199445 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\502217 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |