- -

Remarks on fixed point assertions in digital topology, 6

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Remarks on fixed point assertions in digital topology, 6

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boxer, Laurence es_ES
dc.date.accessioned 2023-11-14T13:51:25Z
dc.date.available 2023-11-14T13:51:25Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199646
dc.description.abstract [EN] This paper continues a series discussing flaws in published assertions concerning fixed points in digital metric spaces. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Fixed point es_ES
dc.subject Metric space es_ES
dc.title Remarks on fixed point assertions in digital topology, 6 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18996
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boxer, L. (2023). Remarks on fixed point assertions in digital topology, 6. Applied General Topology. 24(2):281-305. https://doi.org/10.4995/agt.2023.18996 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18996 es_ES
dc.description.upvformatpinicio 281 es_ES
dc.description.upvformatpfin 305 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18996 es_ES
dc.description.references R. Bhardwaj, Q. A. Kabir, S. Gupta, and H. G. S. Kumar, Digital soft α-ψ-contractive type mapping in digital soft metric spaces, J. Comput. Theor. Nanosci. 18 (2021), 1143- 1145. es_ES
dc.description.references L. Boxer, Digitally continuous functions, Pattern Recogn. Lett. 15, no. 8 (1994), 833- 839. https://doi.org/10.1016/0167-8655(94)90012-4 es_ES
dc.description.references L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 es_ES
dc.description.references L. Boxer, Continuous maps on digital simple closed curves, Appl. Math. 1 (2010), 377-386. https://doi.org/10.4236/am.2010.15050 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 2, Appl. Gen. Topol. 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 3, Appl. Gen. Topol. 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 4, Appl. Gen. Topol. 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 5, Appl. Gen. Topol. 23, no. 2 (2022) 437-451. https://doi.org/10.4995/agt.2022.16655 es_ES
dc.description.references L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Appl. Gen. Topol. 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474 es_ES
dc.description.references M. S. Chauhan S. Rajesh, V. Rupali, and K. Q. Aftab, Fixed point theorem for quadruple self-mappings in digital metric space, Int. J. Sci. Res. Rev. 8, no. 1 (2019), 2533-2540. es_ES
dc.description.references S. Dalal, I. A. Masmali, and G. Y. Alhamzi, Common fixed point results for compatible map in digital metric space, Adv. Pure Math. 8 (2018), 362-371. https://doi.org/10.4236/apm.2018.83019 es_ES
dc.description.references B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (1975), 1455-1458. es_ES
dc.description.references U. P. Dolhare and V. V. Nalawade, Fixed point theorems in digital images and applications to fractal image compression, Asian J. Math. Comput. Res. 25, no. 1 (2018), 18-37. es_ES
dc.description.references O. Ege, D. Jain, S. Kumar, C. Park, and D. Y. Shin, Commuting and compatible mappings in digital metric spaces, J. Fixed Point Theory Appl. 22 (2020), 5. https://doi.org/10.1007/s11784-019-0744-5 es_ES
dc.description.references O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl. 8, no. 3 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08 es_ES
dc.description.references O. Ege and I. Karaca, Digital homotopy fixed point theory, C. R. Math. Acad. Sci. Paris 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006 es_ES
dc.description.references S.-E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018 es_ES
dc.description.references S.-E. Han, Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl. 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19 es_ES
dc.description.references A. Hossain, R. Ferdausi, S. Mondal, and H. Rashid, Banach and Edelstein fixed point theorems for digital images, J. Math. Sci. Appl. 5, no. 2 (2017), 36-39. https://doi.org/10.12691/jmsa-5-2-2 es_ES
dc.description.references D. Jain, Common fixed point theorem for compatible mappings of type (K) in digital metric spaces, Int. J. Math. Appl. 6 (2-A) (2018), 289-293. https://doi.org/10.14445/22315373/IJMTT-V56P511 es_ES
dc.description.references D. Jain, Compatible mappings of type (R) in digital metric spaces, Int. J. Adv. Res. Trends Eng. Technol. 5, no. 4 (2018), 67-71. es_ES
dc.description.references D. Jain and S. Kumar, Fixed point theorem for α-ψ-expansive mappings in digital metric spaces, J. Basic Appl. Eng. Res. 4, no. 6 (2017), 406-411. es_ES
dc.description.references D. Jain, S. Kumar, and C. Park, Weakly compatible mappings in digital metric spaces, seemingly unpublished. es_ES
dc.description.references G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 11, no. 2 (1988), 285-288. https://doi.org/10.1155/S0161171288000341 es_ES
dc.description.references R. Kalaiarasi and R. Jain, Fixed point theory in digital topology, Int. J. Nonlinear Anal. Appl. 13 (2022), 157-163. es_ES
dc.description.references M. V .R. Kameswari, D. M. K. Kiran, and R. K. Mohana Rao, Edelstein type fixed point theorem in digital metric spaces, J. Appl. Sci. Comput. V (XII) (2018), 44-52. es_ES
dc.description.references P. H. Krishna, K. K. M. Sarma, K. M. Rao, and D. A. Tatajee, Common fixed point theorems of Geraghty type contraction maps for digital metric spaces, Int. J. Eng. Res. Appl. (Series V) 10, no. 3 (2020), 34-38. es_ES
dc.description.references P. H. Krishna and D .A. Tatajee, Geraghty contraction principle for digital images, Int. Res. J. Pure Algebr. 9, no. 9 (2019), 64-69. es_ES
dc.description.references I. A. Masmali, G. Y. Alhamzi, and S. Dalal, α-β-ψ-φ contraction in digital metric spaces, Amer. J. Math. Anal. 6, no. 1 (2018), 5-15. es_ES
dc.description.references A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognit. Lett. 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6 es_ES
dc.description.references B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 es_ES
dc.description.references K. Shukla, On digital metric space satisfying certain rational inequalities, Appl. Appl. Math. 16, no. 1 (2021), 223- 236. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem