- -

On graph induced symbolic systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On graph induced symbolic systems

Mostrar el registro completo del ítem

Kumar, P.; Sharma, P. (2023). On graph induced symbolic systems. Applied General Topology. 24(2):359-378. https://doi.org/10.4995/agt.2023.16662

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199730

Ficheros en el ítem

Metadatos del ítem

Título: On graph induced symbolic systems
Autor: Kumar, Prashant Sharma, Puneet
Fecha difusión:
Resumen:
[EN] In this paper, we investigate shift spaces arising from a multidimensional graph G. In particular, we investigate nonemptiness and existence of periodic points for a multidimensional shift space. We derive sufficient ...[+]
Palabras clave: Multidimensional shift spaces , Shifts of finite type , Periodicity in multidimensional shifts of finite type
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.16662
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.16662
Código del Proyecto:
info:eu-repo/grantAgreement/SERB//MTR%2F2019%2F000333
Agradecimientos:
The first author thanks MHRD, Govt. of India and the second author thanks SERB Grant No. MTR/2019/000333 for the financial support.
Tipo: Artículo

References

A. Ballier, B. Durand, and E. Jeandel, Structural aspects of tilings, Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science, STACS 2008.

R. Berger, The undecidability of the Domino Problem, Mem. Amer. Math. Soc. 66 (1966). https://doi.org/10.1090/memo/0066

E. M. Coven, A. S. A. Johnson, N. Jonoska, and K. Madden, The symbolic dynamics of multidimensional tiling systems, Ergodic Theory And Dynamical Systems 23, no. 2 (2003), 447-460. https://doi.org/10.1017/S014338570200113X [+]
A. Ballier, B. Durand, and E. Jeandel, Structural aspects of tilings, Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science, STACS 2008.

R. Berger, The undecidability of the Domino Problem, Mem. Amer. Math. Soc. 66 (1966). https://doi.org/10.1090/memo/0066

E. M. Coven, A. S. A. Johnson, N. Jonoska, and K. Madden, The symbolic dynamics of multidimensional tiling systems, Ergodic Theory And Dynamical Systems 23, no. 2 (2003), 447-460. https://doi.org/10.1017/S014338570200113X

X.-C. Fu, W. Lu, P. Ashwin, and J. Duan, Symbolic representations of iterated maps, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 18 (2001), 119-147. https://doi.org/10.12775/TMNA.2001.027

M. Hochman, and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Annals of Mathematics 171, no. 3 (2010), 2011-2038. https://doi.org/10.4007/annals.2010.171.2011

E. Jeandel and P. Vanier, Characterizations of periods of multi-dimensional shifts, Ergodic Theory and Dynamical Systems 35, no. 2 (2013), 431-460. https://doi.org/10.1017/etds.2013.60

A. S. A. Johnson, and K. M. Madden, The decomposition theorem for two-dimensional shifts of finite type, Proceedings of the American Mathematical Society 127, no. 5 (1999), 1533-1543. https://doi.org/10.1090/S0002-9939-99-04678-X

N. Jonoska and J. B. Pirnot, Finite state automata representing two-dimensional subshifts, Theoretical Computer Science 410, no. 37 (2009), 3504--3512. https://doi.org/10.1016/j.tcs.2009.03.015

B. P. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-3-642-58822-8_7

S. Lightwood, Morphisms from non-periodic $Z^2$-subshifts I: Constructing embeddings from homomorphisms, Ergodic Theory Dynam. Systems 23, no. 2 (2003), 587-609. https://doi.org/10.1017/S014338570200130X

D. Lind, and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511626302

D. Lind, and K. Schmidt, Symbolic and algebraic dynamical systems, Handbook of Dynamical Systems, Elsevier Science, Volume 1, Part A (2002), 765-812. https://doi.org/10.1016/S1874-575X(02)80012-1

A. Quas, and P. Trow, Subshifts of Multidimensional shifts of finite type, Ergodic Theory and Dynamical Systems 20, no. 3 (2000), 859-874. https://doi.org/10.1017/S0143385700000468

C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

P. Sharma and D. Kumar, Matrix characterization of multidimensional subshifts of finite type, Applied General Topology 20, no. 2 (2019), 407-418. https://doi.org/10.4995/agt.2019.11541

P. Sharma and D. Kumar, Multidimensional shifts and finite matrices, Topology Proceedings 57 (2021), 241-257.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem