Dales, H.G., Feinstein, J.F.: Banach function algebras with dense invertible groups. Proc. Am. Math. Soc. 136(4), 1295–1304 (2008)
Kulkarni, S.H.: The group of invertible elements of a real Banach algebra. Houston J. Math. 40(3), 833–836 (2014)
Robertson, G.: On the density of the invertible group in $$C^*$$-algebras. Proc. Edinb. Math. Soc. 20(2), 153–157 (1976)
[+]
Dales, H.G., Feinstein, J.F.: Banach function algebras with dense invertible groups. Proc. Am. Math. Soc. 136(4), 1295–1304 (2008)
Kulkarni, S.H.: The group of invertible elements of a real Banach algebra. Houston J. Math. 40(3), 833–836 (2014)
Robertson, G.: On the density of the invertible group in $$C^*$$-algebras. Proc. Edinb. Math. Soc. 20(2), 153–157 (1976)
Bhatt, S.J., Dedania, H.V.: Banach algebras in which every element is a topological zero divisor. Proc. Am. Math. Soc. 123(3), 735–737 (1995)
Marcos, J.C., Palacios, A.R., Velasco, M.V.: A note on topological divisors of zero and division algebras. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109(1), 93–100 (2015)
Żelazko, W.: On generalized topological divisors of zero. Stud. Math. 85(2), 137–148 (1987)
García, M.C., Rodríguez Palacios, A.: Non-associative normed algebras. Vol. 1. The Vidav-Palmer and Gelfand-Naimark theorems. In: Encyclopedia of Mathematics and its Applications, vol. 154. Cambridge University Press, Cambridge (2014)
Müller, V.: Spectral theory of linear operators and spectral systems in Banach algebras. In: Operator Theory: Advances and Applications, vol. 139. Birkhäuser Verlag AG, Basel (2007)
Roch, S., Santos, P.A., Silbermann, B.: Non-commutative Gelfand Theories: A Tool-kit for Operator Theorists and Numerical Analysts. Springer, London (2011)
Dummit, D.S., Foote, R.M.: Abstract algebra, 3rd edn. Wiley, Hoboken (2004)
Edwards, R.E.: Functional Analysis: Theory and Applications. Dover Publications Inc, New York (1995).. (Corrected reprint of the 1965 original)
Gamelin, T.W.: Uniform algebras, 2nd edn. Chelsea Publishing Company, New York (1984)
Harte, R.: Invertibility and Singularity for Bounded Linear Operators: Monographs and Textbooks in Pure and Applied Mathematics, vol. 109. Marcel Dekker Inc, New York (1988)
Kato, T.: Perturbation Theory for Linear Operators: Classics in Mathematics. Springer, Berlin (1995).. (Reprint of the 1980 edition)
Mathieu, M.: Spectral isometries. In: Topological Algebras, Their Applications, and Related Topics, vol. 67, pp. 265–269. Banach Center Publications, Warsaw (2005)
Waelbroeck, L.: Topological Vector Spaces and A: Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971)
Warner, S.: Topological Fields. Elsevier Science Publishers B.V., Amsterdam (1989)
Warner, S.: Topological rings: North-Holland Mathematics Studies, vol. 178. North-Holland Publishing Co., Amsterdam (1993)
García-Pacheco, F.J., Sáez-Martínez, S.: Normalizing rings. Banach J. Math. Anal. 14(3), 1143–1176 (2020)
Berberian, S.K., Halmos, P.R.: Lectures in Functional Analysis and Operator Theory. Springer, New York (1974)
Megginson, R.E.: An introduction to Banach space theory. In: Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)
García-Pacheco, F.J.: Regularity in topological modules. Mathematics 8(9), 1580 (2020)
García-Pacheco, F.J., Piniella, P.: Unit neighborhoods in topological rings. Banach J. Math. Anal. 9(4), 234–242 (2015)
García-Pacheco, F.J., Piniella, P.: Linear topologies and sequential compactness in topological modules. Quaest. Math. 40(7), 897–908 (2017)
García-Pacheco, F.J., Piniella, P.: Geometry of balanced and absorbing subsets of topological modules. J. Algebra Appl. 18(6), 13 (2019)
[-]