- -

Invertibles in topological rings: a new approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Invertibles in topological rings: a new approach

Mostrar el registro completo del ítem

García-Pacheco, FJ.; Miralles, A.; Murillo Arcila, M. (2022). Invertibles in topological rings: a new approach. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 116(1):1-17. https://doi.org/10.1007/s13398-021-01183-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199838

Ficheros en el ítem

Metadatos del ítem

Título: Invertibles in topological rings: a new approach
Autor: García-Pacheco, Francisco Javier Miralles, Alejandro Murillo Arcila, Marina
Fecha difusión:
Resumen:
[EN] Every element in the boundary of the group of invertibles of a Banach algebra is a topological zero divisor. We extend this result to the scope of topological rings. In particular, we define a new class of semi-normed ...[+]
Palabras clave: Spectrum , Rings , Algebras , Zero divisor , Invertibles , Operator
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-021-01183-4
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-021-01183-4
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F070//Análisis funcional, dinámica de operadores y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/Junta de Andalucía//FEDER-UCA18-105867/
info:eu-repo/grantAgreement/MECD//MTM2016-75963-P//Dinámica de operadores/
info:eu-repo/grantAgreement/MCIU//PGC-101514-B-I00/
info:eu-repo/grantAgreement/UJI//8059%2F2019/
[-]
Agradecimientos:
The authors would like to thank the reviewers for their valuable comments and remarks which have contributed to improve the presentation and quality of the manuscript. The first author has been supported by Research Grant ...[+]
Tipo: Artículo

References

Dales, H.G., Feinstein, J.F.: Banach function algebras with dense invertible groups. Proc. Am. Math. Soc. 136(4), 1295–1304 (2008)

Kulkarni, S.H.: The group of invertible elements of a real Banach algebra. Houston J. Math. 40(3), 833–836 (2014)

Robertson, G.: On the density of the invertible group in $$C^*$$-algebras. Proc. Edinb. Math. Soc. 20(2), 153–157 (1976) [+]
Dales, H.G., Feinstein, J.F.: Banach function algebras with dense invertible groups. Proc. Am. Math. Soc. 136(4), 1295–1304 (2008)

Kulkarni, S.H.: The group of invertible elements of a real Banach algebra. Houston J. Math. 40(3), 833–836 (2014)

Robertson, G.: On the density of the invertible group in $$C^*$$-algebras. Proc. Edinb. Math. Soc. 20(2), 153–157 (1976)

Bhatt, S.J., Dedania, H.V.: Banach algebras in which every element is a topological zero divisor. Proc. Am. Math. Soc. 123(3), 735–737 (1995)

Marcos, J.C., Palacios, A.R., Velasco, M.V.: A note on topological divisors of zero and division algebras. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109(1), 93–100 (2015)

Żelazko, W.: On generalized topological divisors of zero. Stud. Math. 85(2), 137–148 (1987)

García, M.C., Rodríguez Palacios, A.: Non-associative normed algebras. Vol. 1. The Vidav-Palmer and Gelfand-Naimark theorems. In: Encyclopedia of Mathematics and its Applications, vol. 154. Cambridge University Press, Cambridge (2014)

Müller, V.: Spectral theory of linear operators and spectral systems in Banach algebras. In: Operator Theory: Advances and Applications, vol. 139. Birkhäuser Verlag AG, Basel (2007)

Roch, S., Santos, P.A., Silbermann, B.: Non-commutative Gelfand Theories: A Tool-kit for Operator Theorists and Numerical Analysts. Springer, London (2011)

Dummit, D.S., Foote, R.M.: Abstract algebra, 3rd edn. Wiley, Hoboken (2004)

Edwards, R.E.: Functional Analysis: Theory and Applications. Dover Publications Inc, New York (1995).. (Corrected reprint of the 1965 original)

Gamelin, T.W.: Uniform algebras, 2nd edn. Chelsea Publishing Company, New York (1984)

Harte, R.: Invertibility and Singularity for Bounded Linear Operators: Monographs and Textbooks in Pure and Applied Mathematics, vol. 109. Marcel Dekker Inc, New York (1988)

Kato, T.: Perturbation Theory for Linear Operators: Classics in Mathematics. Springer, Berlin (1995).. (Reprint of the 1980 edition)

Mathieu, M.: Spectral isometries. In: Topological Algebras, Their Applications, and Related Topics, vol. 67, pp. 265–269. Banach Center Publications, Warsaw (2005)

Waelbroeck, L.: Topological Vector Spaces and A: Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971)

Warner, S.: Topological Fields. Elsevier Science Publishers B.V., Amsterdam (1989)

Warner, S.: Topological rings: North-Holland Mathematics Studies, vol. 178. North-Holland Publishing Co., Amsterdam (1993)

García-Pacheco, F.J., Sáez-Martínez, S.: Normalizing rings. Banach J. Math. Anal. 14(3), 1143–1176 (2020)

Berberian, S.K., Halmos, P.R.: Lectures in Functional Analysis and Operator Theory. Springer, New York (1974)

Megginson, R.E.: An introduction to Banach space theory. In: Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)

García-Pacheco, F.J.: Regularity in topological modules. Mathematics 8(9), 1580 (2020)

García-Pacheco, F.J., Piniella, P.: Unit neighborhoods in topological rings. Banach J. Math. Anal. 9(4), 234–242 (2015)

García-Pacheco, F.J., Piniella, P.: Linear topologies and sequential compactness in topological modules. Quaest. Math. 40(7), 897–908 (2017)

García-Pacheco, F.J., Piniella, P.: Geometry of balanced and absorbing subsets of topological modules. J. Algebra Appl. 18(6), 13 (2019)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem