- -

Discriminative estimation of probabilistic context-free grammars for mathematical expression recognition and retrieval

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Discriminative estimation of probabilistic context-free grammars for mathematical expression recognition and retrieval

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Noya García, Ernesto es_ES
dc.contributor.author Benedí Ruiz, José Miguel es_ES
dc.contributor.author Sánchez Peiró, Joan Andreu es_ES
dc.contributor.author Anitei, Dan es_ES
dc.date.accessioned 2023-12-18T19:04:05Z
dc.date.available 2023-12-18T19:04:05Z
dc.date.issued 2023-04-18 es_ES
dc.identifier.issn 1433-7541 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200855
dc.description.abstract [EN] We present a discriminative learning algorithm for the probabilistic estimation of two-dimensional probabilistic context-free grammars (2D-PCFG) for mathematical expressions recognition and retrieval. This algorithm is based on a generalization of the H-criterion as the objective function and the growth transformations as the optimization method. For the development of the discriminative estimation algorithm, the N-best interpretations provided by the 2D-PCFG have been considered. Experimental results are reported on two available datasets: Im2Latex and IBEM. The first experiment compares the proposed discriminative estimation method with the classic Viterbi-based estimation method. The second one studies the performance of the estimated models depending on the length of the mathematical expressions and the number of admissible errors in the metric used. es_ES
dc.description.sponsorship This research has been developed with the support of Grant PID2020-116813RBI00a funded by MCIN/AEI/ 10.13039/501100011033 and FPI grant CIACIF/2021/313 funded by Generalitat Valenciana. Universitat Politecnica de Valencia Grant No. SP20210263 es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Pattern Analysis and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Discriminative learning es_ES
dc.subject Two-dimensional probabilistic context-free grammars es_ES
dc.subject Mathematical expression retrieval es_ES
dc.subject Probabilistic indexing es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Discriminative estimation of probabilistic context-free grammars for mathematical expression recognition and retrieval es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10044-023-01158-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116813RB-I00/ES/SEARCHING IN THE SIMANCA ARCHIVE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIACIF%2F2021%2F313//Indexación y búsqueda de expresiones matemáticas basada en redes neuronales profundas para colecciones masivas de imágenes de documentos científicos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20210263/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Noya García, E.; Benedí Ruiz, JM.; Sánchez Peiró, JA.; Anitei, D. (2023). Discriminative estimation of probabilistic context-free grammars for mathematical expression recognition and retrieval. Pattern Analysis and Applications. 26:1571-1584. https://doi.org/10.1007/s10044-023-01158-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10044-023-01158-8 es_ES
dc.description.upvformatpinicio 1571 es_ES
dc.description.upvformatpfin 1584 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.relation.pasarela S\494910 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Bahl LR, Jelinek F, Mercer RL (1983) A maximum likelihood approach to continuous speech recognition. IEEE Trans Pattern Anal Machine Intell 5(2):179–190 es_ES
dc.description.references Koehn P (2009) Statistical Machine Translation. Cambridge University Press, ???. https://doi.org/10.1017/CBO9780511815829 es_ES
dc.description.references Graves A, Fernández S, Gomez F, Schmidhuber J (2006) Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In: ICML, vol 2006, pp 369–376. https://doi.org/10.1145/1143844.1143891 es_ES
dc.description.references Marzal A (1993) Cálculo de las k mejores soluciones a problemas de programación dinámica. PhD thesis, Universidad Politécnica de Valencia es_ES
dc.description.references Jiménez VM, Marzal A (2000) Computation of the N Best Parse Trees for Weighted and Stochastic Context-Free Grammars. In: Advances in Pattern Recognition. Lecture Notes in Computer Science, 1876, pp 183–192 https://doi.org/10.1007/3-540-44522-6_19 es_ES
dc.description.references Ortmanns S, Ney H, Aubert X (1997) A word graph algorithm for large vocabulary continuous speech recognition. Comput Speech Lang 11(1):43–72. https://doi.org/10.1006/csla.1996.0022 es_ES
dc.description.references Noya E, Sánchez JA, Benedí JM (2021) Generation of Hypergraphs from the N-Best Parsing of 2D-Probabilistic Context-Free Grammars for Mathematical Expression Recognition. In: ICPR, pp 5696–5703. https://doi.org/10.1109/ICPR48806.2021.9412273 es_ES
dc.description.references Ueffing N, Och FJ, Ney H (2002) Generation of word graphs in statistical machine translation. In: Proceedings of the 2002 conference on empirical methods in natural language processing (EMNLP 2002), pp 156–163. Association for Computational Linguistics, ???. https://doi.org/10.3115/1118693.1118714. https://aclanthology.org/W02-1021 es_ES
dc.description.references Toselli AH, Vidal E, Puigcerver J, Noya-García E (2019) Probabilistic multi-word spotting in handwritten text images. Pattern Anal Appl 22:23–32. https://doi.org/10.1007/s10044-018-0742-z es_ES
dc.description.references Sánchez-Sáez R, Sánchez JA, Benedí JM (2010) Confidence measures for error discrimination in an interactive predictive parsing framework. In: Coling, pp 1220–1228 es_ES
dc.description.references Benedí JM, Sánchez JA (2005) Estimation of stochastic context-free grammars and their use as language models. Comput Speech Lang 19(3):249–274. https://doi.org/10.1016/j.csl.2004.09.001 es_ES
dc.description.references Awal AM, Mouchère H, Viard-Gaudin C (2012) A global learning approach for an online handwritten mathematical expression recognition system. Pattern Recogn Lett 35:68–77. https://doi.org/10.1016/j.patrec.2012.10.024 es_ES
dc.description.references Álvaro F, Sánchez JA, Benedí JM (2016) An Integrated Grammar-based Approach for Mathematical Expression Recognition. Pattern Recogn 51:135–147. https://doi.org/10.1016/j.patcog.2015.09.013 es_ES
dc.description.references Deng Y, Kanervisto A, Ling J, Rush AM (2017) Image-to-markup generation with coarse-to-fine attention. In: Proceedings of the ICML-17, pp 980–989 es_ES
dc.description.references Anitei D, Sánchez JA, Fuentes JM, Paredes R, Benedí JM (2021) ICDAR2021 Competition on mathematical formula detection. In: ICDAR, pp 783–795. https://doi.org/10.1007/978-3-030-86337-1_52 es_ES
dc.description.references Gopalakrishnan PS, Kanevsky D, Nadas A, Nahamoo D (1991) An inequality for rational functions with applications to some statistical estimation problems. IEEE Trans Inf Theory 37(1):107–113. https://doi.org/10.1109/18.61108 es_ES
dc.description.references Maca M, Benedí JM, Sánchez JA (2021) Discriminative Learning for Probabilistic Context-Free Grammars based on Generalized H-Criterion. Preprint arXiv:2103.08656arXiv:2103.08656 [cs.CL] es_ES
dc.description.references Woodland PC, Povey D (2002) Large scale discriminative training of hidden Markov models for speech recognition. Comput Speech Lang 16(1):25–47. https://doi.org/10.1006/csla.2001.0182 es_ES
dc.description.references Noya E, Benedí JM, Sánchez JA, Anitei D (2022) Discriminative learning of two-dimensional probabilistic context-free grammars for mathematical expression recognition and retrieval. In: IbPRIA, pp 333–347. https://doi.org/10.1007/978-3-031-04881-4_27 es_ES
dc.description.references Zanibbi R, Blostein D (2011) Recognition and Retrieval of Mathematical Expressions. IJDAR 15:331–357. https://doi.org/10.1007/s10032-011-0174-4 es_ES
dc.description.references Huang J, Tan J, Bi N (2020) Overview of mathematical expression recognition. In: Pattern recognition and artificial intelligence, pp 41–54. https://doi.org/10.1007/978-3-030-59830-3_4 es_ES
dc.description.references Mahdavi M, Zanibbi R, Mouchere H, Viard-Gaudin C, Garain U (2019) ICDAR 2019 CROHME + TFD: Competition on recognition of handwritten mathematical expressions and typeset formula detection. In: ICDAR, pp 1533–1538. https://doi.org/10.1109/ICDAR.2019.00247 es_ES
dc.description.references Wang DH, Yin F, Wu JW, Yan YP, Huang ZC, Chen GY, Wang Y, Liu CL (2020) ICFHR 2020 Competition on offline recognition and spotting of handwritten mathematical expressions - OffRaSHME. In: ICFHR, pp. 211–215. https://doi.org/10.1109/ICFHR2020.2020.00047 es_ES
dc.description.references Wan Z, Fan K, Wang Q, Zhang S (2019) Recognition of printed mathematical formula symbols based on convolutional neural network. DEStech Transactions on Computer Science and Engineering. https://doi.org/10.12783/dtcse/ica2019/30711 es_ES
dc.description.references Wu J-W, Yin F, Zhang Y-M, Zhang X-Y, Liu C-L (2020) Handwritten mathematical expression recognition via paired adversarial learning. Int J Comput Vis 128:2386–401. https://doi.org/10.1007/s11263-020-01291-5 es_ES
dc.description.references Peng S, Gao L, Yuan K, Tang Z (2021) Image to LaTeX with Graph Neural Network for Mathematical Formula Recognition. In: ICDAR, pp 648–663. https://doi.org/10.1007/978-3-030-86331-9_42 es_ES
dc.description.references Zhao W, Gao L, Yan Z, Peng S, Du L, Zhang Z (2021) Handwritten mathematical expression recognition with bidirectionally trained transformer. In: Document analysis and recognition – ICDAR 2021, pp 570–584. https://doi.org/10.1007/978-3-030-86331-9_37 es_ES
dc.description.references Davila K, Joshi R, Setlur S, Govindaraju V, Zanibbi R (2019) Tangent-V: Math formula image search using line-of-sight graphs, pp 681–695. https://doi.org/10.1007/978-3-030-15712-8_44 es_ES
dc.description.references Zhong W, Zanibbi R (2019) Structural similarity search for formulas using leaf-root paths in operator subtrees, pp 116–129. https://doi.org/10.1007/978-3-030-15712-8_8 es_ES
dc.description.references Mansouri B, Zanibbi R, Oard D (2019) Characterizing searches for mathematical concepts, pp 57–66. https://doi.org/10.1109/JCDL.2019.00019 es_ES
dc.description.references Chou PA (1989) Recognition of equations using a two-dimensional stochastic context-free grammar. In: Visual communications and image processing IV, vol 1199, pp 852–863. https://doi.org/10.1117/12.970095 es_ES
dc.description.references Pr$$\mathring{u}$$ša D, Hlaváč V (2007) Mathematical Formulae Recognition Using 2D Grammars. ICDAR 2, 849–853. https://doi.org/10.1109/ICDAR.2007.4377035 es_ES
dc.description.references Lari K, Young SJ (1991) Applications of stochastic context-free grammars using the inside-outside algorithm. Comput Speech Lang 5(3):237–257. https://doi.org/10.1016/0885-2308(91)90009-F es_ES
dc.description.references Ney H (1992) Stochastic grammars and pattern recognition. In: Laface, P., De Mori, R. (eds.) Speech recognition and understanding, pp 319–344. https://doi.org/10.1007/978-3-642-76626-8_34 es_ES
dc.description.references Baum LE, Sell GR (1968) Growth transformation for functions on manifolds. Pac J Math 27(2):211–227 es_ES
dc.description.references Casacuberta F (1996) Growth transformations for probabilistic functions of stochastic grammars. IJPRAI 10(3):183–201. https://doi.org/10.1142/S0218001496000153 es_ES
dc.description.references Gopalakrishnan P, Kanevsky D, Nadas A, Nahamoo D, Picheny M (1988) Decoder selection based on cross-entropies. In: ICASSP-88, vol 1, pp 20–23. https://doi.org/10.1109/ICASSP.1988.196499 es_ES
dc.description.references Papineni K, Roukos S, Ward T, Zhu WJ (2002) BLEU: a method for automatic evaluation of machine translation. In: ACL, pp 311–318. https://doi.org/10.3115/1073083.1073135 es_ES
dc.description.references Suzuki M, Tamari F, Fukuda R, Uchida S, Kanahori T (2003) Infty: an integrated ocr system for mathematical documents, pp 95–104. https://doi.org/10.1145/958220.958239 es_ES
dc.description.references Shi B, Bai X, Yao C (2017) An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. TPAMI 39–11:2298–2304. https://doi.org/10.1109/TPAMI.2016.2646371 es_ES
dc.description.references Singh S (2018) Teaching machines to code: neural markup generation with visual attention. Preprint arXiv:1802.05415arXiv:1802.05415 [cs.CL] es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem