Mostrar el registro sencillo del ítem
dc.contributor.author | Noya García, Ernesto | es_ES |
dc.contributor.author | Benedí Ruiz, José Miguel | es_ES |
dc.contributor.author | Sánchez Peiró, Joan Andreu | es_ES |
dc.contributor.author | Anitei, Dan | es_ES |
dc.date.accessioned | 2023-12-18T19:04:05Z | |
dc.date.available | 2023-12-18T19:04:05Z | |
dc.date.issued | 2023-04-18 | es_ES |
dc.identifier.issn | 1433-7541 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200855 | |
dc.description.abstract | [EN] We present a discriminative learning algorithm for the probabilistic estimation of two-dimensional probabilistic context-free grammars (2D-PCFG) for mathematical expressions recognition and retrieval. This algorithm is based on a generalization of the H-criterion as the objective function and the growth transformations as the optimization method. For the development of the discriminative estimation algorithm, the N-best interpretations provided by the 2D-PCFG have been considered. Experimental results are reported on two available datasets: Im2Latex and IBEM. The first experiment compares the proposed discriminative estimation method with the classic Viterbi-based estimation method. The second one studies the performance of the estimated models depending on the length of the mathematical expressions and the number of admissible errors in the metric used. | es_ES |
dc.description.sponsorship | This research has been developed with the support of Grant PID2020-116813RBI00a funded by MCIN/AEI/ 10.13039/501100011033 and FPI grant CIACIF/2021/313 funded by Generalitat Valenciana. Universitat Politecnica de Valencia Grant No. SP20210263 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Pattern Analysis and Applications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Discriminative learning | es_ES |
dc.subject | Two-dimensional probabilistic context-free grammars | es_ES |
dc.subject | Mathematical expression retrieval | es_ES |
dc.subject | Probabilistic indexing | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Discriminative estimation of probabilistic context-free grammars for mathematical expression recognition and retrieval | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10044-023-01158-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116813RB-I00/ES/SEARCHING IN THE SIMANCA ARCHIVE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIACIF%2F2021%2F313//Indexación y búsqueda de expresiones matemáticas basada en redes neuronales profundas para colecciones masivas de imágenes de documentos científicos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20210263/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Noya García, E.; Benedí Ruiz, JM.; Sánchez Peiró, JA.; Anitei, D. (2023). Discriminative estimation of probabilistic context-free grammars for mathematical expression recognition and retrieval. Pattern Analysis and Applications. 26:1571-1584. https://doi.org/10.1007/s10044-023-01158-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10044-023-01158-8 | es_ES |
dc.description.upvformatpinicio | 1571 | es_ES |
dc.description.upvformatpfin | 1584 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.relation.pasarela | S\494910 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Bahl LR, Jelinek F, Mercer RL (1983) A maximum likelihood approach to continuous speech recognition. IEEE Trans Pattern Anal Machine Intell 5(2):179–190 | es_ES |
dc.description.references | Koehn P (2009) Statistical Machine Translation. Cambridge University Press, ???. https://doi.org/10.1017/CBO9780511815829 | es_ES |
dc.description.references | Graves A, Fernández S, Gomez F, Schmidhuber J (2006) Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In: ICML, vol 2006, pp 369–376. https://doi.org/10.1145/1143844.1143891 | es_ES |
dc.description.references | Marzal A (1993) Cálculo de las k mejores soluciones a problemas de programación dinámica. PhD thesis, Universidad Politécnica de Valencia | es_ES |
dc.description.references | Jiménez VM, Marzal A (2000) Computation of the N Best Parse Trees for Weighted and Stochastic Context-Free Grammars. In: Advances in Pattern Recognition. Lecture Notes in Computer Science, 1876, pp 183–192 https://doi.org/10.1007/3-540-44522-6_19 | es_ES |
dc.description.references | Ortmanns S, Ney H, Aubert X (1997) A word graph algorithm for large vocabulary continuous speech recognition. Comput Speech Lang 11(1):43–72. https://doi.org/10.1006/csla.1996.0022 | es_ES |
dc.description.references | Noya E, Sánchez JA, Benedí JM (2021) Generation of Hypergraphs from the N-Best Parsing of 2D-Probabilistic Context-Free Grammars for Mathematical Expression Recognition. In: ICPR, pp 5696–5703. https://doi.org/10.1109/ICPR48806.2021.9412273 | es_ES |
dc.description.references | Ueffing N, Och FJ, Ney H (2002) Generation of word graphs in statistical machine translation. In: Proceedings of the 2002 conference on empirical methods in natural language processing (EMNLP 2002), pp 156–163. Association for Computational Linguistics, ???. https://doi.org/10.3115/1118693.1118714. https://aclanthology.org/W02-1021 | es_ES |
dc.description.references | Toselli AH, Vidal E, Puigcerver J, Noya-García E (2019) Probabilistic multi-word spotting in handwritten text images. Pattern Anal Appl 22:23–32. https://doi.org/10.1007/s10044-018-0742-z | es_ES |
dc.description.references | Sánchez-Sáez R, Sánchez JA, Benedí JM (2010) Confidence measures for error discrimination in an interactive predictive parsing framework. In: Coling, pp 1220–1228 | es_ES |
dc.description.references | Benedí JM, Sánchez JA (2005) Estimation of stochastic context-free grammars and their use as language models. Comput Speech Lang 19(3):249–274. https://doi.org/10.1016/j.csl.2004.09.001 | es_ES |
dc.description.references | Awal AM, Mouchère H, Viard-Gaudin C (2012) A global learning approach for an online handwritten mathematical expression recognition system. Pattern Recogn Lett 35:68–77. https://doi.org/10.1016/j.patrec.2012.10.024 | es_ES |
dc.description.references | Álvaro F, Sánchez JA, Benedí JM (2016) An Integrated Grammar-based Approach for Mathematical Expression Recognition. Pattern Recogn 51:135–147. https://doi.org/10.1016/j.patcog.2015.09.013 | es_ES |
dc.description.references | Deng Y, Kanervisto A, Ling J, Rush AM (2017) Image-to-markup generation with coarse-to-fine attention. In: Proceedings of the ICML-17, pp 980–989 | es_ES |
dc.description.references | Anitei D, Sánchez JA, Fuentes JM, Paredes R, Benedí JM (2021) ICDAR2021 Competition on mathematical formula detection. In: ICDAR, pp 783–795. https://doi.org/10.1007/978-3-030-86337-1_52 | es_ES |
dc.description.references | Gopalakrishnan PS, Kanevsky D, Nadas A, Nahamoo D (1991) An inequality for rational functions with applications to some statistical estimation problems. IEEE Trans Inf Theory 37(1):107–113. https://doi.org/10.1109/18.61108 | es_ES |
dc.description.references | Maca M, Benedí JM, Sánchez JA (2021) Discriminative Learning for Probabilistic Context-Free Grammars based on Generalized H-Criterion. Preprint arXiv:2103.08656arXiv:2103.08656 [cs.CL] | es_ES |
dc.description.references | Woodland PC, Povey D (2002) Large scale discriminative training of hidden Markov models for speech recognition. Comput Speech Lang 16(1):25–47. https://doi.org/10.1006/csla.2001.0182 | es_ES |
dc.description.references | Noya E, Benedí JM, Sánchez JA, Anitei D (2022) Discriminative learning of two-dimensional probabilistic context-free grammars for mathematical expression recognition and retrieval. In: IbPRIA, pp 333–347. https://doi.org/10.1007/978-3-031-04881-4_27 | es_ES |
dc.description.references | Zanibbi R, Blostein D (2011) Recognition and Retrieval of Mathematical Expressions. IJDAR 15:331–357. https://doi.org/10.1007/s10032-011-0174-4 | es_ES |
dc.description.references | Huang J, Tan J, Bi N (2020) Overview of mathematical expression recognition. In: Pattern recognition and artificial intelligence, pp 41–54. https://doi.org/10.1007/978-3-030-59830-3_4 | es_ES |
dc.description.references | Mahdavi M, Zanibbi R, Mouchere H, Viard-Gaudin C, Garain U (2019) ICDAR 2019 CROHME + TFD: Competition on recognition of handwritten mathematical expressions and typeset formula detection. In: ICDAR, pp 1533–1538. https://doi.org/10.1109/ICDAR.2019.00247 | es_ES |
dc.description.references | Wang DH, Yin F, Wu JW, Yan YP, Huang ZC, Chen GY, Wang Y, Liu CL (2020) ICFHR 2020 Competition on offline recognition and spotting of handwritten mathematical expressions - OffRaSHME. In: ICFHR, pp. 211–215. https://doi.org/10.1109/ICFHR2020.2020.00047 | es_ES |
dc.description.references | Wan Z, Fan K, Wang Q, Zhang S (2019) Recognition of printed mathematical formula symbols based on convolutional neural network. DEStech Transactions on Computer Science and Engineering. https://doi.org/10.12783/dtcse/ica2019/30711 | es_ES |
dc.description.references | Wu J-W, Yin F, Zhang Y-M, Zhang X-Y, Liu C-L (2020) Handwritten mathematical expression recognition via paired adversarial learning. Int J Comput Vis 128:2386–401. https://doi.org/10.1007/s11263-020-01291-5 | es_ES |
dc.description.references | Peng S, Gao L, Yuan K, Tang Z (2021) Image to LaTeX with Graph Neural Network for Mathematical Formula Recognition. In: ICDAR, pp 648–663. https://doi.org/10.1007/978-3-030-86331-9_42 | es_ES |
dc.description.references | Zhao W, Gao L, Yan Z, Peng S, Du L, Zhang Z (2021) Handwritten mathematical expression recognition with bidirectionally trained transformer. In: Document analysis and recognition – ICDAR 2021, pp 570–584. https://doi.org/10.1007/978-3-030-86331-9_37 | es_ES |
dc.description.references | Davila K, Joshi R, Setlur S, Govindaraju V, Zanibbi R (2019) Tangent-V: Math formula image search using line-of-sight graphs, pp 681–695. https://doi.org/10.1007/978-3-030-15712-8_44 | es_ES |
dc.description.references | Zhong W, Zanibbi R (2019) Structural similarity search for formulas using leaf-root paths in operator subtrees, pp 116–129. https://doi.org/10.1007/978-3-030-15712-8_8 | es_ES |
dc.description.references | Mansouri B, Zanibbi R, Oard D (2019) Characterizing searches for mathematical concepts, pp 57–66. https://doi.org/10.1109/JCDL.2019.00019 | es_ES |
dc.description.references | Chou PA (1989) Recognition of equations using a two-dimensional stochastic context-free grammar. In: Visual communications and image processing IV, vol 1199, pp 852–863. https://doi.org/10.1117/12.970095 | es_ES |
dc.description.references | Pr$$\mathring{u}$$ša D, Hlaváč V (2007) Mathematical Formulae Recognition Using 2D Grammars. ICDAR 2, 849–853. https://doi.org/10.1109/ICDAR.2007.4377035 | es_ES |
dc.description.references | Lari K, Young SJ (1991) Applications of stochastic context-free grammars using the inside-outside algorithm. Comput Speech Lang 5(3):237–257. https://doi.org/10.1016/0885-2308(91)90009-F | es_ES |
dc.description.references | Ney H (1992) Stochastic grammars and pattern recognition. In: Laface, P., De Mori, R. (eds.) Speech recognition and understanding, pp 319–344. https://doi.org/10.1007/978-3-642-76626-8_34 | es_ES |
dc.description.references | Baum LE, Sell GR (1968) Growth transformation for functions on manifolds. Pac J Math 27(2):211–227 | es_ES |
dc.description.references | Casacuberta F (1996) Growth transformations for probabilistic functions of stochastic grammars. IJPRAI 10(3):183–201. https://doi.org/10.1142/S0218001496000153 | es_ES |
dc.description.references | Gopalakrishnan P, Kanevsky D, Nadas A, Nahamoo D, Picheny M (1988) Decoder selection based on cross-entropies. In: ICASSP-88, vol 1, pp 20–23. https://doi.org/10.1109/ICASSP.1988.196499 | es_ES |
dc.description.references | Papineni K, Roukos S, Ward T, Zhu WJ (2002) BLEU: a method for automatic evaluation of machine translation. In: ACL, pp 311–318. https://doi.org/10.3115/1073083.1073135 | es_ES |
dc.description.references | Suzuki M, Tamari F, Fukuda R, Uchida S, Kanahori T (2003) Infty: an integrated ocr system for mathematical documents, pp 95–104. https://doi.org/10.1145/958220.958239 | es_ES |
dc.description.references | Shi B, Bai X, Yao C (2017) An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. TPAMI 39–11:2298–2304. https://doi.org/10.1109/TPAMI.2016.2646371 | es_ES |
dc.description.references | Singh S (2018) Teaching machines to code: neural markup generation with visual attention. Preprint arXiv:1802.05415arXiv:1802.05415 [cs.CL] | es_ES |